

Boices Lane Railroad Crossing Study
Town of Ulster, Ulster County, NY October, 2013

Prepared For:

NEW YORK STATE DEPARTMENT OF TRANSPORTATION

Prepared By:

Table of Contents

Page
Table of Contents ii
List of Figures ii
List of Tables iii
List of Appendices iii
Chapter 1. Introduction 1
A. Study Area 1
B. Methodology 2
Chapter 2. Existing Conditions 4
A. Study Intersections 4
B. Accident History 5
C. Traffic Volumes 6
D. Pedestrian Activity 7
E. Existing Operations 7
F. Train Activity 9
Chapter 3. Alternatives 12
A. Short-Term Improvements 12
B. Long-Term Improvement 12
Chapter 4. Evaluation 19
A. Traffic Volume Forecasts 19
B. Level of Service and Capacity Analysis 19
C. Cost Estimates 21
D. Funding and Implementation 22
Chapter 5. Conclusions and Recommendations 24
List of Figures
Page
Figure 1.1 - Existing Conditions Assessment. 3
Figure 2.1 - 2012 Existing Peak Hour Traffic Volumes 11
Figure 3.1 - Short-Term Option A (Signal Optimization) 14
Figure 3.2 - Short-Term Option B (Increase Capacity) 15
Figure 3.3 - Alternative 1 (Modified Tech City) 16
Figure 3.4 - Alternative 2 (Jug Handle) 17
Figure 3.5 - Alternative 3 (Turn Prohibitions) 18
Figure 4.1 - 2032 PM Peak Hour Traffic Volumes 23
Figure 5.1 - Preferred Long-Term Alternative 26

List of Tables

PageTable 2.1 - Accident Severity Summary 6
Table 2.2 - Summary of Average Traffic Volumes 7
Table 2.3 - Pedestrian and Bicycle Crossing Summary 7
Table 2.4 - Levels of Service 8
Table 2.5 - Existing Level of Service Summary 8
Table 2.6 - CSX Train Movements (Weekday Summary) 9
Table 2.7 - CSX Train Movements (Weekend Summary) 10
Table 2.8 - CSX Train Movements (Weekly) 10
Table 4.1 - Short-Term Improvements Levels of Service 19
Table 4.2 - Long-Term Improvements Levels of Service 20
Table 4.3 - Short-Term Improvement Cost Estimates 21

List of Appendices

Appendix A Accident Evaluation
Appendix B Traffic Volume Data
Appendix C Level of Service Analyses and Timing Reports
Level of Service Analyses and Timing Reports
\qquad CSX Train Schedule
Appendix E. Preferred Alternative Planning Level Cost Estimate

Chapter 1. Introduction

This report summarizes the results of a traffic operations and safety assessment at the existing railroad crossing on Boices Lane in the Town of Ulster, Ulster County, New York. The assessment includes the adjacent intersections of Morton Boulevard and John Clark Drive with Boices Lane. The project location is shown in the aerial image below:

A. Study Area

Boices Lane serves about 12,500 vehicles per day (vpd) and provides a connection between the commercial corridor of US Route 9W (Ulster Avenue) and Tech City and Enterprise Drive. In addition, Enterprise Drive provides a connection to US Route 209 allowing vehicles to bypass the US Route 9W interchange connection with US Route 209/NY Route 199.

The study intersections of Morton Boulevard and John Clark Drive are located about 325 feet apart along Boices Lane about 600 feet west of US Route 9W. Both intersections are controlled by traffic signals. The CSX railroad crossing is located between the two intersections approximately 100 feet west of John Clark Drive.

Sidewalks are provided on Boices Lane in the southwest quadrant of the Morton Boulevard intersection along the Stewarts parcel and on the north side of Boices Lane between US Route

9W and John Clark Drive. A multi-use path/sidewalk is also provided on the north side of Boices Lane within the Tech City property limits and along the east side of the CSX railroad which extends from Boices Lane approximately 375 -feet north intersecting the shoulder of John Clark Drive.

Land uses in the study area include a mix of large and small scale retail, residential, and service uses. The Stewart's Shop and gas station, located in the southwest quadrant of the Morton Boulevard intersection, has access to Boices Lane and Morton Boulevard. These driveways are located relatively close to the intersection so the traffic entering and exiting Stewart's affects operations at the Boices Lane/Morton Boulevard intersection.

Field visits and discussions with the New York State Department of Transportation (NYSDOT), the Town of Ulster, Ulster County, and CSX identified a number of issues within the study area that affect the operations at the study intersections. Figure 1.1 illustrates a number of these issues; which are generally identified in the bulleted list below.

- Non-compliant, poor condition, or non-existent pedestrian accommodations
- Old and/or faulty traffic signal equipment
- Narrow right-of-way
- Short and narrow eastbound right turn lane on Boices Lane approaching Morton Blvd
- Inconsistent pavement markings and signs
- Acute intersection approach angle from Morton Boulevard approaching Boices Lane
- Long queues and delay during pre-emption

This study is an opportunity to identify modifications that will improve conditions for all users in the study area.

B. Methodology

This study was progressed under the direction an Advisory Committee, and using the NYSMPO Safety Assessment Guidelines. The Advisory Committee included the following Agencies.

- Town of Ulster (Supervisor and Department of Public Works (DPW))
- Ulster County DPW
- Ulster County Metropolitan Planning Organization (UCTC)
- NYSDOT
- CSX

Chapter 2. Existing Conditions

A. Study Intersections

At the Boices Lane/Morton Boulevard intersection the eastbound and westbound Boices Lane approaches each provide three lanes for individual travel maneuvers. The northbound Morton Boulevard approach provides a shared left-turn/through lane and right-turn lane. The southbound approach provides a left-turn lane and a shared through/right-turn lane.

At the Boices Lane/John Clark Drive intersection the eastbound approach provides a shared left-turn/through lane and a through/right-turn lane. The westbound, northbound, and southbound approaches each provide shared left-turn/through lanes and right-turn lanes.

As noted previously, the two study intersections operate under traffic signal control. Although these two signals are located close together, they operate independent of each other and are not coordinated.

When a train is approaching the Boices Lane crossing, the traffic signals operate to clear the traffic between the two intersections. The traffic signals then transition to a pre-emption phase. The following image illustrates the signal clearance and pre-emption phasing at the study intersections.

	EXISTING SIGNAL PHASING			
	MORTON BLVD		JOHN CLARK DR	
EXISTING SIGNAL TIMING				
$\begin{aligned} & \text { CLEARANCE } \\ & \text { TO } \\ & \text { PRE-EMPTION } \end{aligned}$		-		
PRE-EMPTION			-	

A review of the existing signal equipment found the following:

- Traffic signal cabinet wiring is old and the insulation is worn
- Several detector loops are not functioning
- Fluctuations in electrical currents frequently cause the traffic signals to go into recall or operate in flash mode
- The MUTCD states that the pre-emption phasing currently in place, allowing right-turn overlaps towards the rail track, should be prohibited toward a rail crossing within 200 feet ${ }^{1}$. It is noted that the pre-emption phase that allows certain movements to take place when a train is present, is a relatively recent improvement at these intersections. It was reportedly implemented within the last year.
- The two traffic signals are not currently coordinated

Based upon this review, the existing traffic signal equipment should be upgraded or replaced and the traffic signal phasing should be modified to meet standards and provide optimum operations.

B. Accident History

Accident data was obtained from NYSDOT for the most recent five-year period from January 1, 2007 through December 31, 2011. Table 2.1 summarizes the number and severity of the accidents at and between the study area intersections.

[^0]Table 2.1 - Accident Severity Summary

Location	Severity				Total
	Fatality	Injury	PDO	NR	
Morton Blvd/Boices Ln	0	5	10	5	20
Boices Ln from Morton Blvd to John Clark Dr	0	1	4	5	10
John Clark Dr/Boices Ln	0	0	6	2	8

PDO = Property Damage Only
NR = Non-Reportable which indicates no personal injuries occurred and property damages totaled less than \$1,000
The data shows 38 accidents occurred within the immediate study area. Accident rates were calculated and compared to the statewide average for the two study intersections. The accident rate at the Morton Boulevard intersection is 0.58 accidents per million vehicles entering the intersection (acc/MEV) while the calculated rate at the John Clark Drive intersection is 0.34 $\mathrm{acc} / \mathrm{MEV}$. The statewide average rate for signalized intersections of a similar type is 0.32 acc/MEV. Collision diagrams are included in Appendix A. Review of the accident data identified few discernable patterns.

- There are a variety of types of accidents including rear-end, side swipe, and right angle, among others.
- The crash rate at the Boices Lane/Morton Boulevard intersection is higher than the statewide average for similar intersections. (It is noted that the statewide average rate is based only on intersections with state roads. Since this is an intersection of a county road, and town road, the comparison may not be directly applicable).

The Ulster Police Department summarized accident data along Boices Lane from Ulster Avenue (US Route 9W) to Enterprise Drive for the time period from January 1, 2008 through September 21, 2012. The summary identified a similar number of accidents at the Morton Boulevard intersection (22 collisions) and the John Clark Drive intersection (9 collisions), and showed that four accidents appeared to be related to the railroad crossing gate; two of which were gate violations. The first involved a box truck disregarding the flashing red lights and striking the gates as they closed. The second accident involved an emergency vehicle and a gate malfunction in which the westbound gate lights weren't working.

C. Traffic Volumes

An automatic traffic recorder (ATR) was installed on Boices Lane 900-feet west of Morton Boulevard to document existing traffic volumes. The ATR showed a small reduction in volume as compared to a 2009 count conducted at the same location. Table 2.2 summarizes the average daily and peak hour traffic volumes recorded. As a result, the 2009 existing PM peak hour turning movement data is a conservative representation of existing 2012 conditions.

Table 2.2 - Summary of Average Traffic Volumes

Boices Lane	$\mathbf{2 0 1 2}$	$\mathbf{2 0 0 9}$
AADT	12,400	13,880
DHV (PM Peak)	1,160	1,315
K-Factor	0.094	0.095
DDHV (Eastbound)	645	730
Percent	56%	56%
\% Trucks (Daily)	1.5%	3%

AADT = Annual Average Daily Traffic
DHV = Design Hour Volume (K-Factor = Peak hour volume divided by daily volume) DDHV = Directional Design Hour Volume

The table shows that the eastbound direction is the peak direction of travel. This is due to Boices Lane being used as an alternate travel route to US Route 209.

Turning movement traffic counts were conducted at the study area intersections during the morning peak commuter period from 7:15 to 9:00 a.m. in September 2012 to supplement available PM peak hour data. The existing AM and PM peak hour traffic volumes are shown on Figure 2.1. The traffic volume data is included in Appendix B.

D. Pedestrian Activity

Sidewalks are provided on Boices Lane in the southwest quadrant of the Morton Boulevard intersection along the Stewarts parcel and on the north side of Boices Lane between US Route 9W and John Clark Drive. A multi-use path/sidewalk is also provided on the north side of Boices Lane within the Tech City property limits and along the east side of the CSX railroad which extends from Boices Lane approximately 375 -feet north intersecting the shoulder of John Clark Drive. Table 2.3 shows a summary of the peak hour pedestrian and bicycle crossings observed during the turning movement counts. The pedestrians and bicyclists were observed using the pedestrian accommodations where available.

Table 2.3 - Pedestrian and Bicycle Crossing Summary

Intersection	AM Peak Hour		PM Peak Hour	
	Pedestrians	Bicycles	Pedestrians	Bicycles
Boices Ln/Morton Blvd/Tech City Dwy	2	1	9	0
Boices Ln/John Clark Dr/Plaza Dwy	2	1	2	2

The existing pedestrian network is incomplete. This is especially apparent at the two intersections (there are no pedestrian crossings, push buttons, or indicators) and at the rail crossing where the narrow pavement width results in pedestrians and bicyclists often travelling in the vehicle lane. Pedestrian improvements should be included in the plan for future improvements consistent with the New York State and Ulster County Complete Streets legislation.

E. Existing Operations

Intersection Level of Service (LOS) and capacity analysis relate traffic volumes to the physical characteristics of an intersection. Intersection evaluations were made using the Synchro

Software (version 7) which automates the procedures contained in the Highway Capacity Manual. Levels of service range from A to F with level of service A conditions considered excellent with very little delay while level of service F generally represents conditions with very long delays. Table 2.4 identifies the levels of service and associated delay ranges for each type of traffic control. Appendix C contains detailed descriptions of LOS criteria for signalized, unsignalized, and roundabout controlled intersections. Table 2.5 shows the results of the existing levels of service analysis.

Table 2.4 - Levels of Service

Level of Service	Control Delay (sec/veh) Insignalized	Signalized or Roundabout Intersection	
	≤ 10.0	≤ 10.0	
A	>10.0 and ≤ 15.0	>10.0 and ≤ 20.0	
B	>15.0 and ≤ 25.0	>20.0 and ≤ 35.0	
C	>25.0 and ≤ 35.0	>35.0 and ≤ 55.0	
D	>35.0 and ≤ 50.0	>55.0 and ≤ 80.0	
E	>50.0	>80.0	
F			

Table 2.5 - Existing Level of Service Summary

Intersection		O	Existing 2012		
		AM Peak Hour	PM Peak Hour		
Boices Ln/Morton Blvd/Tech City Dwy			S		
Boices Ln EB	L	B (16.3)		A (0.0)	
	T	B (19.6)		C (31.1)	
	R	A (6.8)		A (6.4)	
Boices Ln WB	L	A (9.8)		B (13.9)	
	T	A (9.5)		B (11.8)	
	R	A (8.5)		A (0.0)	
Morton Blvd NB	LT	B (12.8)		B (17.4)	
	R	A (6.1)		A (9.0)	
East Drwy SB	L	C (26.8)		D (35.7)	
	TR	C (26.9)		D (35.4)	
Overall			B (11.4)	B (16.4)	
Boices Ln/John Clark Dr/Plaza Dwy		S			
	LT,TR		A (5.2)	A (6.4)	
Boices Ln WB	LT		A (5.6)	A (6.2)	
Retail Drwy NB	R		A (4.4)	A (4.5)	
	LT		B (15.5)	B (16.1)	
	R		A (0.0)	B (15.5)	
John Clark Dr SB	LT		B (15.9)	B (16.1)	
	R		B (16.0)	B (16.2)	
Overall			A (7.5)	A (8.3)	

TW, AW, S, R = Two-way stop, All-way stop, Signal, or Roundabout controlled intersection NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound intersection approaches L, T, R = Left-turn, through, and/or right-turn movements
$X(Y . Y)=$ Level of Service (Average delay in seconds per vehicle)

The analysis shows that the intersections currently operate with acceptable levels of service during the AM and PM peak hours under existing, average conditions. However, field observations show that when a train is crossing Boices Lane, eastbound vehicle queues extend
as far as Enterprise Drive and westbound vehicle queues extend toward Route 9, but were not observed reaching Route 9. The intersections take several traffic signal cycles to recover and return to average operating conditions.

It is noted that the inconsistent pavement striping, signing, narrow travel lanes, and the acute side street approach angle at Morton Boulevard contribute to the complexity of the intersections. The short and narrow eastbound right turn on Boices Lane approaching Morton Boulevard is not long enough to allow traffic to flow freely on this overlap during pre-emption. Providing standard pavement striping and signing, while improving lane widths and lengthening the eastbound right turn lane, will help improve driver guidance and operations during pre-emption.

The evaluation also identifies the PM peak hour as the critical time period with higher traffic volumes, therefore the AM peak hour is eliminated from further analysis. All additional evaluations focus on the PM peak hour.

F. Train Activity

Daily regularly scheduled trains that cross the at-grade railroad crossing on Boices Lane were provided by CSX for the month of August 2012. The data is included in Appendix D. The weekday and weekend data is summarized on Tables 2.6 and 2.7 . It is noted that these totals do not include "extra" trains such as ethanol loads (south) and empties (north).

Table 2.6-CSX Train Movements (Weekday Summary)

Day	Date	Train Moves	Average Length (feet)	
Wednesday	$8 / 1 / 2012$	31	5,684	
Thursday	$8 / 2 / 2012$	30	5,671	
Friday	$8 / 3 / 2012$	30	5,142	
Monday	$8 / 6 / 2012$	21	5,565	
Tuesday	$8 / 7 / 2012$	31	4,888	
Wednesday	$8 / 8 / 2012$	32	5,418	
Thursday	$8 / 9 / 2012$	33	5,271	
Friday	$8 / 10 / 2012$	29	5,187	
Monday	$8 / 13 / 2012$	22	5,239	
Tuesday	$8 / 14 / 2012$	34	4,550	
Wednesday	$8 / 15 / 2012$	31	5,456	
Thursday	$8 / 17 / 2012$	31	5,266	
Friday	$8 / 20 / 2012$	29	5,609	
Monday	$8 / 21 / 2012$	23	5,513	
Tuesday	$8 / 22 / 2012$	33	5,116	
Wednesday	$8 / 23 / 2012$	31	5,328	
Thursday	$8 / 24 / 2012$	31	5,173	
Friday	$8 / 27 / 2012$	25	5,408	
Monday	$8 / 28 / 2012$	29	4,883	
Tuesday	$8 / 29 / 2012$	35	5,311	
Wednesday	$8 / 30 / 2012$	32	5,079	
Thursday	$8 / 31 / 2012$	32	5,459	
Friday	30	4,644		
		5,255		

Table 2.7-CSX Train Movements (Weekend Summary)

Day	Date	Train Moves	Average Length (feet)
Saturday	$8 / 4 / 2012$	29	6,070
Sunday	$8 / 5 / 2012$	25	6,273
Saturday	$8 / 11 / 2012$	22	6,785
Sunday	$8 / 12 / 2012$	25	5,715
Saturday	$8 / 18 / 2012$	28	5,996
Sunday	$8 / 19 / 2012$	24	5,965
Saturday	$8 / 25 / 2012$	31	6,085
Sunday	$8 / 26 / 2012$	23	5,684
	$\mathbf{2 6}$	$\mathbf{6 , 0 7 2}$	

An acoustic train counter was also installed adjacent to the rail crossing from October 26 to November 7, however only a few days of reliable data was obtained before Hurricane Sandy hit on October 29, which affected the train service in the area. The two days of data showed reasonable correlations with the data in Table 2.7 where 26 trains were counted on Saturday October 27, and 20 trains were counted on Sunday October 28.

Train speeds range from slow moving trains associated with track changing nearby, to 50 mph high speed trains. Depending on the speed of the train, pre-emption typically lasts approximately two to four minutes.

Table 2.8 summarizes regularly scheduled trains each week.
Table 2.8 - CSX Train Movements (Weekly)

Day	Train Moves	Northbound	Southbound
Monday	23	11	12
Tuesday	27	15	12
Wednesday	30	16	14
Thursday	31	16	15
Friday	29	15	14
Saturday	27	13	14
Sunday	24	11	13
Total	$\mathbf{1 9 1}$	$\mathbf{9 7}$	$\mathbf{9 4}$

PM PEAK HOUR

Chapter 3. Alternatives

Based on a review of the existing traffic conditions analysis, three short-term and three longterm alternatives were developed for evaluation. The alternatives are described below.

A. Short-Term Improvements

Three short-term alternatives were identified for evaluation. Option A is shown on Figure 3.1. This option upgrades the existing traffic signals and includes minor roadway/shoulder widening within the right-of-way including widening and lengthening the eastbound right turn lane on Boices Lane at Morton Boulevard, and addresses the existing pavement striping and signing inconsistencies. This is considered the minimum improvement to address existing deficiencies. Option B is shown on Figure 3.2 and includes the Option A changes, and also modifies the approach geometry at both intersections to provide more capacity in anticipation of growth at Tech City. Option C is similar to Option A, with a different signal phasing modification that would provide split phasing at both traffic signals with inside clearance between the two intersections

Option A (Signal Optimization)

1. Pave shoulders to the right-of-way on the south side of Boices Lane at the railroad crossing
2. Complete the pavement striping including stop bars and turn arrows
3. Widen and extend the eastbound right-turn lane on Boices Lane at Morton Boulevard by approximately 250 feet by shortening the second westbound travel lane west of Morton Boulevard
4. Improve traffic control with new wiring, signal heads, signs, 2070 traffic signal controllers, and new cabinets. The 2070 controllers will allow improved phasing after pre-emption to clear the queues more quickly. The 2070 controller will also require additional training so that they can be operated and maintained adequately by the Town.
5. Restrict left-turns from Boices Lane onto Elmwood Street
6. Improve turn restrictions at Stewart's driveway with additional signs

Option B (Increase Capacity)

1. Option A improvements, plus:
2. Modify geometry on Boices Lane at Morton Boulevard to provide two eastbound through lanes on Boices Lane at Morton Boulevard. Provide two westbound through lanes on Boices Lane at John Clark Drive.

Option C (Split Phasing - Inside Clearance)

1. Split phasing with inside clearance, meaning one signal controller would operate both intersections. The intersections would be phased to eliminate queuing between the two intersections (inside clearance). This would include the same level of investment as Option A to upgrade the traffic signals and address other existing deficiencies.

B. Long-Term Improvement

Three long-term alternatives were evaluated as identified below. These include Tech City (Alternative 1) shown on Figure 3.3, Jug Handle (Alternative 2) shown on Figure 3.4, and Turn Prohibitions (Alternative 3) shown on Figure 3.5. These long term alternatives are more extensive than the short-term options, because they involve additional roadway construction
and right-of-way to address standard lane widths, alignment issues and pedestrian accommodations. There was also a discussion of a possible a raised median along Boices Lane to reduce gate violations and crashes at Stewart's driveways, which could be added to any long term comprehensive reconstruction alternative.

Alternative 1 (Modified Tech City)

This is the same geometric improvement contained in the Tech City GEIS. The only change is the addition of pedestrian accommodations.

1. Widen and extend eastbound right turn lane on Boices Lane and at Morton Boulevard
2. Increase the radius for the Morton Boulevard northbound right-turn movement onto Boices Lane. This will require right-of-way and utility relocation.
3. Add a second eastbound through lane on Boices Lane approaching Morton Boulevard
4. Provide crosswalks at the Morton Boulevard and John Clark Drive intersections and pedestrian accommodations across the RR tracks (on one side at a minimum). Note crosswalks are not proposed on Boices Lane between the two intersections because this would require relocating the stop line and reducing the available storage between the railroad and each intersection.
5. Improve signal control with new pedestrian signals, vehicle phasing, and signal coordination. This will require relocation of CSX train pre-emption detection to enable sufficient pedestrian clearance time.
6. Obtain right-of-way and easements as needed for roadway and pedestrian improvements

Alternative 2 (Jug Handle)

1. Eliminate westbound lefts from Boices Lane to Morton Boulevard and construct jug handle for left turns to Morton Boulevard.
2. Install pedestrian accommodations at the intersections and sidewalks across the railroad crossing with same considerations as Alternative 1.
3. Add a second eastbound through lane on Boices Lane approaching Morton Boulevard
4. Improve signal control consistent with Alternative 1.
5. Obtain right-of-way and easements as needed for roadway and pedestrian improvements

Alternative 3 (Turn Prohibitions)

The intent of the Turn Prohibition Alternative is to eliminate all queuing on the RR tracks.

1. Eastbound left turns would be restricted from Boices Lane onto John Clark Drive and westbound left turns would be restricted from Boices Lane onto Morton Boulevard.
2. Peak hour volumes on the order of 150 vehicles per hour currently making these turns, would divert to other roadways or intersections. The Advisory Committee felt this would require further study of the impact of the diverted trips.
3. This concept also includes modifications to side street geometry at both intersections as shown on the Figure 3.5.

PAVE SHOULDER OUT TO ROWCOMPLETE PAVEMENT STRIPING INCLUDINGEXTEND EASTBOUND RIGHT TURN LANE (+250 FT)IMPROVE TRAFFIC CONTROL WITH NEW WIRING, SIGNAL HEADS, SIGNS,
4 CONTOLER CABINET, AN SIGNAL PHASING, THS MAY REQUIIE NEW POLES 2070 SIGNAL CONTROLLER REQUIRES TRAINING TO MAINTAIN AND
5
RESTRICT LEFT TURNS INTO ELMWOODIMPROVE TURN RESTRICTIONS AT STEWART'S DRIVEWAY WITH ADDITIONAL SIGNING

PAVEMENT WIDENING

COMPLETE PAVEMENT STRIPING INCLUDINGSTOP BARS AND TURN ARROWS (TYP)
3
EXTEND EASTBOUND RIGHT TURN LANE (+250 FT) AND PROVIDE TWO PROVIDE TWO WESTBOUND THROUGH LANES ON BOICES LN AT JOHN CLARK DR IMPROVE TRAFFIC CONTROL WITH NEW WIRING, SIGNAL HEADS, SIGNS,CONTROLLER CABINET, AND SIGNAL PHASING THIS MAY REQUIRE NEW POLES 2070 SIGNAL CONTROLLER, REQUITRES TRAINING TO MAINTAIN AND OPERATE
5
RESTRICT LEFT TURNS FROM BOICES LN ONTO ELMWOOD S

8 Creighton
PROJECT: 112-023
Manning

3 MAINTAN SEPARATE LEFT-TURN, THROUGH, AND RIGGT-TURN LANES ON THE WESTBOUND APPROACH. FUTURE ANALYSIS IS REQUIRED TO DETERMINE
THE NEED FOR A SHARED THROUGHRIGHT-TIRN ANE. THE NEED FOR A SHARED THROUGHRIGIGTT-TURN LANE. PROVIDE ELLANE CROSS SECTION ACROSS RALLROAD TRACKS AND
INSTAL SIDEWA KS ACROSS RAILROAD CROSSING

5 add eastbound through lane

6 PROVIDE PEDESTRIAN CROSSWALKS
7 IMPROVE TRAFFIC SIGNAL CONTROL WITH NEW PEDESTRIAN SIGNALS, PHASING AND COORDINATION. MAY REQUIRE RELOCATION OF CSX TRAIN PRE-EMPTION DETECTION TO ENABLE SUFFICIENT PEDESTRIAN CLEARANCE TIME.
8 OBTAIN ROW AS NECESSARY FOR ROADWAY IMPROVEMENTS

ELIMNATE WESTBOUND LEFTS AND CONSTRUCT JUG HANDLE FOR TURNS ONTO MORTON BLVD
4
INSTALL SIDEWALKS ACROSS RALLROAD CROSSING
5
ADD EASTBOUND THROUGH LANE
6 PROVIDE PEDESTRIAN CROSSWALKS
7 IMPROVE TRAFFIC SIENAL CONTROL WTH NEW PEDESTRIA SIGNALS, PHASING AND COORDINATION. MAY REQUIRE RELOCATION OF CSX TRAIN PRE-EMPTION DETECTION TO ENABLE SUFFICIENT PEDESTRIAN CLEARANCE TIME.
8 OBTAIN ROW AS NECESSARY FOR ROADWAY IMPROVEMENTS
9 MEDANOPTION TO REDUCE GATE VIOLATIONS AND CRASHES

NOTE:
FOR PLANNING PURPOSES ONLY. THE CONCEPT
parcel boundary and approximate row
----- PROPOSED APProximate Row

Chapter 4. Evaluation

A. Traffic Volume Forecasts

Traffic volumes were developed for the 2032 future conditions to evaluate the effectiveness of the long-term alternatives. The future traffic volumes include traffic associated with development at Tech City and general background growth and are illustrated on Figure 4.1.

B. Level of Service and Capacity Analysis

The relative impact of the short-term and long-term improvements can be determined by comparing the level of service during the design year for the Existing and Build or Null and Build traffic conditions. Tables 4.1 and 4.2 summarize the results of the Level of Service calculations for the PM peak hour for the short- and long-term improvements, respectively.

Table 4.1 - Short-Term Improvements Levels of Service

Intersection		$\begin{aligned} & \text { O} \\ & \text { OL } \\ & 0 \\ & 0 \end{aligned}$	PM Peak Hour Short-Term Options (2012)				
		Existing	Option A (Optimization)	Option B (Capacity)	Option C (Phasing)		
Boices Ln/Morton Blvd/Tech City Dwy			S				
Boices Ln EB	L			A (0.0)	--	A (0.0)	
	T	C (31.1)		C (24.9)	--	E (66.2)	
	[LT, T]	--		--	B (19.9)	--	
	R	A (6.8)		A (5.5)	A (6.2)	C (30.3)	
Boices Ln WB	L	B (13.9)		A (8.7)	A (6.3)	B (11.9)	
	T	B (11.8)		A (6.1)	--	B (11.9)	
	R	A (0.0)		A (0.0)	--	A (0.0)	
Morton Blvd NB	[TR]	--		--	A (6.9)	A	
	LT	B (17.4)		B (18.8)	B (17.3)	E (59.6)	
	R	A (9.0)		B (11.4)	A (9.7)	C (27.9)	
East Drwy SB	L	D (35.7)		C (33.8)	C (33.5)	C (23.7)	
	TR	D (35.4)		C (33.3)	C (33.1)	C (23.4)	
Overall			B (16.5)	B (13.7)	B (12.1)	D (38.5)	
Boices Ln/John Clark Dr/Plaza Dwy		S					
Boices Ln EB	LT,TR		A (6.4)	A (1.1)	A (1.7)	A (0.5)	
Boices Ln WB	LT		A (6.2)	A (8.1)	--	E (72.3)	
	R		A (4.5)	A (5.9)	--	C (29.5)	
Retail Drwy NB	[LT,TR]		$\stackrel{-}{-1}$	$\stackrel{--}{\text { - }}$	A (6.8)	$\stackrel{--}{\text { - }}$	
	LT		B (16.1)	C (23.7)	C (23.7)	D (36.1)	
	R		B (15.5)	C (23.1)	C (23.1)	D (35.1)	
John Clark Dr SB	LT		B (16.1)	C (23.6)	C (23.6)	D (36.0)	
	R		B (16.2)	C (25.9)	C (25.9)	E (57.8)	
Overall			A (8.3)	A (7.8)	A (7.8)	C (29.3)	

TW, AW, S, R = Two-way stop, All-way stop, Signal, or Roundabout controlled intersection
NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound intersection approaches
L, T, R = Left-turn, through, and/or right-turn movements
[LT,T] = Future approach geometry
$X(Y . Y)=$ Level of Service (Average delay in seconds per vehicle)
-- = Not applicable

The analysis shows that the study intersections will operate with levels of service comparable to existing conditions with implementation of either Short-term Option A or Short-term Option B. Delays under Short-term Option C would be three or four times greater than existing, which make this alternative less feasible. For clarification, Short-term Option C (Phasing - Inside Clearance) would require upgrades to the existing traffic signals to allow both intersections to
operate as one. The specific phasing is shown on the Synchro Timing Reports in Appendix C. As noted previously, providing standard pavement striping and signing, while improving lane widths to the extent possible, which is included in all of the short term improvements, will help to strengthen driver guidance and improve safety and operations at the intersections.

Table 4.2 - Long-Term Improvements Levels of Service

Intersection		$\overline{0}$0.0.00	PM Peak Hour Long Range Options (2032)				
		Null	Tech City Alternative 1	Jug Handle Alternative 2	Prohibit Turns Alternative 3		
Boices Ln/Morton Blvd/Tech City Drwy			S				
Boices Ln EB	L	A (0.0)		--	--	--	
	T	F (85.4)		--	--	--	
	[T,T]	--		C (28.3)	B (19.4)	C (23.2)	
	R	C (22.4)		A (9.3)	A (7.5)	B (19.5)	
Boices Ln WB	L	F (156)		C (30.3)	--	--	
	T	B (19.8)		B (15.7)	C (23.4)	A (4.2)	
	R	C (23.3)		B (10.1)	(A (0.1)	
Morton Blvd NB	LT	D (39.1)		--	--	--	
	R	B (14.5)		--			
	[L]	--		B (18.3)	C (25.6)	C (29.3)	
	[TR]	F --		C (32.8)	C (22.5)	B (14.7)	
East Drwy SB	L	F (133)		C (27.0)	B (16.4)	B (15.9)	
	TR	C (22.0)		C (30.1)	D (42.3)	B (12.6)	
Overall			E (56.6)	C (22.2)	C (22.0)	B (17.5)	
Boices Ln/John Clark Dr/Plaza Drwy		S					
Boices Ln EBBoices Ln WB	LT,TR		A (8.1)	A (5.5)	A (4.5)	--	
	[T,TR]		$\stackrel{-}{-1}$	A	A	A (0.4)	
	LT		B (11.3)	--	--	--	
	R		A (6.8)	$\stackrel{--}{8}$	A (82)	B ${ }_{-}$	
Retail Drwy NB	[LT,TR]		$\stackrel{--}{\text { C }}$ (33)	A (8.2)	A (8.2)	B (19.6)	
	LT		C (33.7)	C (22.8)	C (22.8)	C (25.1)	
	R		C (32.8)	C (22.1)	C (22.1)	C (24.6)	
John Clark Dr SB	LT		C (33.7)	C (22.7)	C (22.7)	C (26.3)	
	R		D (40.7)	C (27.2)	C (27.2)	C (29.3)	
	Overall		B (13.6)	A (9.4)	A (8.8)	A (9.2)	

TW, AW, S, R = Two-way stop, All-way stop, Signal, or Roundabout controlled intersection
NB, SB, EB, WB = Northbound, Southbound, Eastbound, Westbound intersection approaches
L, T, R = Left-turn, through, and/or right-turn movements
[LT,T] = Future approach geometry
$X(Y . Y)=$ Level of Service (Average delay in seconds per vehicle)
-- = Not applicable

The level of service analysis shows that under 2032 Null conditions, several movements at the Boices Lane/Morton Boulevard intersection will operate at level of service F. Improvements are needed to provide generally acceptable levels of service. The Boices Lane/John Clark Drive intersection will operate at overall level of service B under future 2032 conditions. With implementation of long-term alternatives 1, 2, or 3, the Morton Boulevard intersection will operate at overall level of service C with all movements operating at level of service D or better. At John Clark Drive, the intersection will operate at overall level of service A with all movements operating at level of service C or better.

In addition the sidewalk and crosswalk features associated with construction of the long-term alternatives will provide substantial benefit to pedestrians.

C. Cost Estimates

The long-range capacity alternatives will be costly to construct and require public hearings for modifications to the rail crossing. While some type of capacity improvement is expected to be needed in the future with development of Tech City, a large scale capital project is not likely at this time based on discussions with the Advisory Committee, and due to limited funding. Cost estimates were prepared for the short-term improvements to identify funding needs associated with the two feasible options.

Improvements to the traffic signal phasing and signing may require installation of new traffic signal poles subject to the loading capacity of the existing poles. In addition, due to the extent of the lane and pavement markings, milling and replacing the existing top coat of asphalt may be needed to provide a clean surface for the new markings. Table 4.3 summarizes the planning level cost estimates for the two short-term options assuming partial replacement of traffic control equipment and grinding of the existing pavement markings for Option A, and full replacement of traffic signals and mill and fill for Option B.

Table 4.3 - Short-Term Improvement Cost Estimates

	Cost	
	Option A	Option B
Item Description		
Signal Components - Morton Blvd	\$74,000	--
Signal - Morton Blvd	--	\$119,000
Signal Components - John Clark Dr	\$136,000	\$181,000
Signal - John Clark Dr	--	--
Striping - Morton Blvd	\$13,000	\$20,000
Striping - John Clark Dr	\$13,000	\$20,000
Box Out widening	\$20,000	\$20,000
Mill and fill	--	\$170,000
Item Sub-Total	\$256,000	\$530,000
Construction		
Contingency (25\%)	\$64,000	\$132,500
Work Zone Traffic Control (6\%)	\$15,400	\$31,800
Survey and Stakeout (2\%)	\$5,200	\$10,600
Construction Sub-Total	\$340,600	\$704,900
Mobilization (4\%)	\$13,600	\$28,200
Construction Total	\$354,200	\$733,100
Soft Costs		
Design Engineering (12\%)	\$42,500	\$88,000
Construction Inspection (15\%)	\$53,100	\$110,000
Project Total	\$449,800	\$931,100
Project Estimate	\$455,000	\$935,000

The cost estimate comparison shows that the minimum recommended investment is approximately $\$ 455,000$ to rewire the traffic signals, replace the signal controllers and address other existing deficiencies. Adding geometry, additional roadway work and new traffic signals associated with Option B increases the overall cost to approximately $\$ 935,000$.

D. Funding and Implementation

A meeting was held with the NYSDOT Main Office Rail group to discuss the availability of Section 130 grade crossing safety program funds for some or all of these improvements. Discussions with NYSDOT and review of the program web site - https://www.dot.ny.gov/ divisions/operating/osss/rail/grade-crossings revealed the following priorities for the grade crossing safety program:

1. Addressing crossings that warrant interconnection with highway traffic signals
2. Improving pedestrian crossing safety
3. Mitigating profile deficient crossings
4. Updating existing active warning devices/signals at grade crossings
5. Updating passive public crossings
6. Closing/eliminating crossings

This study has shown that Items 1 and 2 (highway traffic signal improvements and pedestrian crossing improvements) are needed in the area. Conversations with Advisory Committee and the NYSDOT Main Office also noted that item 4 (updating the active warning devices) would be needed to accommodate future pedestrian crossing improvements. The NYSDOT web site also states:
"New York's Grade Crossing Program focuses on improving safety at existing highwayrailroad crossings primarily through the installation of warning devices. Such devices include: standard signs and pavement markings; installation or replacement of active warning devices (flashers and gates); upgrading active warning devices, including track circuitry improvements and interconnections with highway traffic signals; crossing illumination; crossing surface improvements; and general site improvements".

It was concluded that the NYSDOT Region 8 would continue to coordinate with the NYSDOT Main Office to secure Section 130 funds. Additional cost sharing discussions are required with the Town, and the MPO to determine if additional sources of funding can be applied to the project. At this time, it appears that the Section 130 funds would be used toward Item 4 above to widen the crossing and install new stanchions, so that a separate future pedestrian improvement project and highway traffic signal project could tie into the new widened crossing.

ALTERNATIVE 1
(TECH CITY)

ALTERNATIVE 2
(JUG HANDLE)

ALTERNATIVE 3
(TURN PROHIBITIONS)

Chapter 5. Conclusions and Recommendations

This report summarizes the results of a traffic operations and safety assessment at the existing railroad crossing on Boices Lane in the Town of Ulster, Ulster County, New York. The assessment includes the adjacent intersections of Morton Boulevard and John Clark Drive with Boices Lane and finds the following conditions exist.

- Non-compliant, poor condition, or non-existent pedestrian accommodations
- Pedestrian activity at the RR crossing
- Old and/or faulty highway traffic signal equipment
- Narrow right-of-way
- Short and narrow eastbound right turn lane on Boices Lane approaching Morton Boulevard
- Inconsistent pavement markings and signs
- Acute intersection approach angle from Morton Boulevard approaching Boices Lane causes lane encroachment
- Long vehicular queues and delay during pre-emption, which typically lasts two to four minutes (an average of 30 trains per day use the crossing)
- Train speeds ranging from low speed associated track switching, to high speed 50 mph trains
- Crash rate at the Boices Lane/Morton Boulevard intersection is above the statewide average for similar intersections
- The accident evaluation identified two gate violations including one involving malfunctioning equipment
- Average daily traffic volumes on the order of 12,500 vehicles per day at the crossing

Many of these conditions point to the need for improvements at the crossing and at the adjacent intersections. The primary goals of the improvement options are to improve driver guidance and traffic operations and safety, improve pedestrian accommodations, and improve traffic operations during and immediately after pre-emption. Short term options include:

- Option A: Upgrade the highway traffic signal equipment and increase the length of the eastbound right-turn lane at Morton Boulevard, which will allow traffic in this lane to flow more readily during pre-emption.
- Option B: Install new highway traffic signals, increase the length of the eastbound rightturn lane at Morton Boulevard, provide two eastbound through lanes at Morton Boulevard and two westbound through lanes at John Clark Drive. This improvement provides more capacity for growth at Tech City.
- Option C: Provide split phasing at the two highway traffic signals to enable inside clearance i.e. no queuing between the two traffic signals.

Implementation of either Option A or Option B will provide good traffic operations with improved driver guidance. Vehicular delays under Option C would be three or four times greater than existing, which make this alternative less feasible.

Several long term alternatives were also investigated which would involve roadway widening, pedestrian accommodations, and right-of-way acquisition. These alternatives included:

- Alternative 1 (Modified Tech City): Upgrade and connect pedestrian accommodations, provide a 4-lane cross section across the railroad tracks, upgrade the traffic signal equipment, improve the railroad crossing, upgrade non-standard features.
- Alternative 2 (Jug Handle): Upgrade and connect pedestrian accommodations, eliminate westbound lefts from Boices Lane to Morton Boulevard, upgrade traffic signal equipment, improve the railroad crossing, upgrade non-standard features.
- Alternative 3 (Turn Prohibitions): Upgrade and connect pedestrian accommodations, restrict eastbound lefts to John Clark Drive and westbound lefts to Morton Boulevard, upgrade traffic signal equipment, improve the railroad crossing, upgrade non-standard features.

When comparing the short- and long-term alternatives, the primary distinctions are the right-ofway impacts, pedestrian improvements, widening the railroad crossing (new RR stanchions), and project costs. The long-term improvements also address the need for standard lane widths, radii, and lane alignment. While the long-term improvements are expected to be needed in the future with the development of Tech City, the immediately anticipated growth does not necessitate capacity improvements, and funding for this level of improvement is not currently available, therefore, the implementation plan focuses on short-term strategies and improvements.

Discussions with the NYSDOT and the Advisory Committee concluded that Section 130 grade crossing safety program funds would be pursued for short-term improvements in the area. This could cover the cost of widening the crossing, installing new RR signal stanchions, and relocating the train detection to accommodate necessary pedestrian clearance times for a future highway traffic signal and pedestrian improvement project funded separately.

In the long-term, Alternative 1 (Modified Tech City) has been identified as the preferred alternative for the following reasons:

- Completes the pedestrian network in the study area.
- Provides good operations.
- Addresses roadway capacity and alignment needs.
- Results in small ROW impacts
- Addresses the Morton Boulevard turning maneuver encroachment.
- Clarifies driver guidance

Planning level cost estimates were prepared for the preferred long-term alternative and are included in Appendix E. Total project cost is estimated at $\$ 3,150,000$, which includes contingencies, engineering and construction inspection. This cost will be off-set somewhat to the extent that the short-term improvements are pursued and retained. The preferred long-term alternative is shown on Figure 5.1.

On-going coordination is recommended with the MPO, the Town, and the NYSDOT to confirm additional funding and responsibilities.

INCREASE CORNER RADII BY REMOVING UTLITY POLE,MAINTAIN SEPARATE LEET-TURN, THROUGH, AND RIGHT-TURN LANES ON THE WESTBOUND APPROACH. FUTURE ANALYSIS IS REQUIRED TO DETERMINE THE NEED FOR A SHARED THROUGHRIGHT-TURN LANE.
PROVIDE 4-LANE CROSS SECTION ACROSS RALLROAD TRACKS AND
INSTALL SIDENALKS ACROSS RALROAD CROSSNG INSTALL SIDEWALKS ACROSS RALLROAD CROSSING
5
add Eastbound through lane
PROVIIE PEDESTRIAN CROSSWALKSIIMRROVE TRAFFIC SIGNAL CONTROL WTH NEW PEDESTTRIAN SIGNALS, PHASING AND COORDNATION. MAY REQUIRE RELOCATION OF CSX TRAIN PRE-EMPTION DETECTION TO ENABLE SUFFICIENT PEDESTRIAN CLEARANCE TIME


```
FORT PLANNNG PURPOSES ONLY. THE CONCEPT
    PARCEL BOUNDARY AND APPROXImATE ROW
----- PROPOSED APPROXIMATE RON
```


Appendix A

Accident Evaluation

Railroad Crossing Study
Boices Lane
Town of Ulster, Ulster County, New York

DIAGRAMNo.: \qquad

DIAGRAMNo.: \qquad

DIAGRAMNO.: \qquad

TOWN ULSTER
JOB NO. 112-023
NUMBER OF ACCIDENTS
INTERSECTION OF BOICES LANE \qquad AND JOHN CLARK DR BY MDN

PERIOD 5 YRS. 0 MO.
FROM 1/1/07 TO 12/31/11
DATE 10/4/12

ACCIDENT SUMMARY	DAYLIGHT					NIGHT					TOTALS				
CLASSIFICATION BY TYPES	FATAL	NONFATAL	$\begin{aligned} & \text { PROP. } \\ & \text { DAM. } \end{aligned}$	NONREP	TOTAL	FATAL	NONFATAL	PROP. DAM.	NONREP.	TOTAL	FATAL	NONFATAL	PROP. DAM.	NONREP.	TOTAL
RIGHT ANGLE			3		3								3		3
REAR-END			1	1	2			1		1			2	1	3
HEAD-ON / BACKING				1	1			-						1	1
RIGHT TURN								1		1			1		1
OVERTAKING/SIDESWIPE															
RUN OFF ROAD															
FIXED OBJECT															
PARKED CAR															
PEDESTRIAN/BICYCLIST															
OTHER															
TOTALS			4	2	6			2		2			6	2	8

TOWN ULSTER JOB NO. 112-023 NUMBER OF ACCIDENTS

SEGMENT OF BOICES MORTON BLVD TO JOHN CLARK DR BY MDN
PERIOD 5 YRS. 0 MO.
FROM 1/1/07 TO 12/31/11
DATE 10/4/12

TOWN ULSTER
JOB NO. 112-023
NUMBER OF ACCIDENTS
INTERSECTION OF BOICES LANE \qquad AND MORTON BLVD BY MDN

PERIOD 5 YRS. 0 MO.
FROM 1/1/07 TO 12/31/11
DATE 10/4/12

ACCIDENT SUMMARY	DAYLIGHT					NIGHT					TOTALS				
CLASSIFICATION BY TYPES	FATAL	NONFATAL	$\begin{gathered} \text { PROP. } \\ \text { DAM. } \end{gathered}$	NONREP.	TOTAL	FATAL	NONFATAL	$\begin{gathered} \text { PROP. } \\ \text { DAM. } \end{gathered}$	NONREP.	TOTAL	FATAL	NON- FATAL	$\begin{gathered} \text { PROP. } \\ \text { DAM. } \end{gathered}$	NONREP.	TOTAL
RIGHT ANGLE		1	4		5		1			1		2	4		6
REAR-END		3		4	7							3		4	7
HEAD-ON / BACKING			1		1								1		1
RIGHT TURN			2		2								2		2
OVERTAKING/SIDESWIPE			2	1	3								2	1	3
RUN OFF ROAD															
FIXED OBJECT			1		1								1		1
PARKED CAR															
PEDESTRIAN/BICYCLIST															
OTHER															
TOTALS		4	10	5	19		1			1		5	10	5	20

Appendix B

Traffic Volume Data

Railroad Crossing Study
Boices Lane
Town of Ulster, Ulster County, New York

Project: 112-023
Counted By: MDN
Location: Ulster, NY
File Name : tm112023a2
Site Code : 12-023-2
Start Date : 9/28/2012
Page No : 1

Groups Printed- Pass Veh - Heavy Veh - School Bus

	Boices Ln Eastbound					Boices Ln Westbound					Morton Blvd Northbound					Driveway Southbound					
Start Time	Left	Thru	Right	RTOR	Aod Tolkl	Left	Thru	Righl	RTOR	Ape. Tean	Left	Thru	Right	RTOR	Aspo Toud	Left	Thru	Right	RTOR	Ape Tolal	Int. Totar
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
07:15 AM	0	29	26	11	66	17	24	3	0	44	42	0	2	13	57	0	1	0	0	1	168
07:30 AM	0	32	44	9	85	17	43	1	2	63	62	5	4	6	77	1	0	0	0	1	226
07:45 AM	0	61	49	25	135	21	56	3	1	81	87	2	11	10	110	0	2	0	0	2	328
Total	0	122	119	45	286	55	123	7	3	188	191	7	17	29	244	1	3	0	0	4	722

08:00 AM	0	43	43	14	100	26	28	7	1	62	53	4	7	13	77	2	2	0	0	4	243
08:15 AM	0	44	35	14	93	35	31	2	2	70	55	1	12	9	77	1	1	0	1	3	243
08:30 AM	1	50	52	20	123	34	42	3	0	79	35	0	14	11	60	1	0	0	0		263
08:45 AM	0	60	42	25	127	33	43	2	0	78	53	4	10	17	84	0	1	0	0	1	290
Total	1	197	172	73	443	128	144	14	3	289	196	9	43	50	298	4	4	0	1	9	1039
Grand Total	1	319	291	118	729	183	267	21	6	477	387	16	60	79	542	5	7	0	1	13	1761
Apprch \%	0.1	43.8	39.9	16.2		38.4	56	4.4	1.3		71.4	3	11.1	14.6		38.5	53.8	0	7.7		
Total \%	0.1	18.1	16.5	6.7	41.4	10.4	15.2	1.2	0.3	27.1	22	0.9	3.4	4.5	30.8	0.3	0.4	0	0.1	0.7	
Pass Veh	1	313	278	115	707	181	261	21	5	468	368	15	58	78	519	5	7	0	0	12	1706
\% Pass Veh	100	98.1	95.5	97.5	97	98.9	97.8	100	83.3	98.1	95.1	93.8	96.7	98.7	95.8	100	100	0	0	92.3	96.9
Heavy Veh	0	1	0	3	4	2	2	0	1	5	4	1	2	1	8	0	0	0	1	1	18
\% Heavy Veh	0	0.3	0	2.5	0.5	1.1	0.7	0	16.7	1	1	6.2	3.3	1.3	1.5	0	0	0	100	7.7	1
School Bus	0	5	13	0	18	0	4	0	0	4	15	0	0	0	15	0	0	0	0	0	37
\% School Bus	0	1.6	4.5	0	2.5	0	1.5	0	0	0.8	3.9	0	0	0	2.8	0	0	0	0	0	2.1

Project: 112-023
File Name : tm112023a2
Counted By: MDN
Site Code : 12-023-2
Location: Ulster, NY
Start Date: 9/28/2012
Page No : 2

	Boices Ln Eastbound					Boices Ln Westbound					Morton Blvd Northbound					Driveway Southbound					
Start Time	Left	Thru	Right	RTOR	Abp Tolal	Left	Thru	Right	RTOR	Apa Toun	Left	Thru	Right	RTOR	Anp Total	Left	Thru	Right	RTOR	Afsp Teme	Int Total
Peak Hour Analysis From 7:15:00 AM to 8:45:00 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 7:45:00 AM																					
7:45:00 AM	0	61	49	25	135	21	56	3	1	81	87	2	11	10	110	0	2	0	0	2	328
8:00:00 AM	0	43	43	14	100	26	28	7	1	62	53	4	7	13	77	2	2	0	0	4	243
8:15:00 AM	0	44	35	14	93	35	31	2	2	70	55	1	12	9	77	1	1	0	1	3	243
8:30:00 AM	1	50	52	20	123	34	42	3	0	79	35	0	14	11	60	1	0	0	0	1	263
Total Volume	1	198	179	73	451	116	157	15	4	292	230	7	44	43	324	4	5	0	1	10	1077
\% App. Total	0.2	43.9	39.7	16.2		39.7	53.8	5.1	1.4		71	2.2	13.6	13.3		40	50	0	10		
PHF	250	. 811	. 861	. 730	. 835	829	. 701	. 536	. 500	. 901	. 661	. 438	. 786	. 827	. 736	. 500	. 625	. 000	. 250	. 625	. 821
Pass Veh	1	195	170	70	436	114	152	15	3	284	222	6	44	42	314	4	5	0	0	9	1043
\% Pass Veh	100	98.5	95.0	95.9	96.7	98.3	96.8	100	75.0	97.3	96.5	85.7	100	97.7	96.9	100	100	0	0	90.0	96.8
Heavy Veh	0	0	0	3	3	2	1	0	1	4	2	1	0	1	4	0	0	0	1	1	12
\% Heavy Veh	0	0	0	4.1	0.7	1.7	0.6	0	25.0	1.4	0.9	143	0	2.3	1.2	0	0	0	100	10.0	1.1
School Bus	0	3	9	0	12	0	4	0	0	4	6	0	0	0	6	0	0	0	0	0	22
\% School Bus	0	1.5	5.0	0	2.7	0	2.5	0	0	1.4	2.6	0	0	0	1.9	0	0	0	0	0	2.0

Project: 112-023
Counted By: DDD
Location: Ulster, NY
Other:
File Name : tm112023a1
Site Code : 12-023-1
Start Date : 9/28/2012
Page No : 1

	Boices Ln Eastbound					Boices Ln Westbound					Driveway Northbound					John Clark Dr Southbound					
Start Time	Left	Thru	Righı	RTor	Anp Taum	Left	Thru	Right	RTOR	Nontam	Left	Thru	Right	RTOR	Ane toot	Left	Thru	Right	RTOR	Aob Tast	Inct Toat
07:15 AM	6	40	0	0	46	0	39	1	2	42	0	0	1	1	2	1	1	6	4	12	102
07:30 AM	6	41	0	0	47	0	49	1	1	51	1	0	0	0	1	2	0	9	8	19	118
07:45 AM	11	73	0	0	84	0	59	4	0	63	1	0	0	0	1	3	0	11	7	21	169
Total	23	154	0	0	177	0	147	6	3	156	2	0	1	1	4	6	1	26	19	52	389
08:00 AM	9	55	0	0	64	0	42	2	0	44	1	0	0	0	1	2	1	7	17	27	136
08:15 AM	8	54	0	0	62	0	43	2	0	45	0	0	0	0	0	3	0	11	17	31	138
08:30 AM	14	55	1	0	70	0	46	2	0	48	1	0	0	0	1	4	1	11	8	24	143
08:45 AM	19	75	0	0	94	2	52	4	0	58	0	1	0	0	1	2	0	17	15	34	187
Total	50	239	1	0	290	2	183	10	0	195	2	1	0	0	3	11	2	46	57	116	604
Grand Total	73	393	1	0	467	2	330	16	3	351	4	1	1	,	7	17	8	72	76	168	993
Apprch \%	15.6	84.2	0.2	0		0.6	94	4.6	0.9		57.1	14.3	14.3	14.3		10.1	1.8	42.9	45.2		
Total \%	7.4	39.6	0.1	0	47	0.2	33.2	1.6	0.3	35.3	0.4	0.1	0.1	0.1	0.7	1.7	0.3	7.3	7.7	16.9	
Pass Veh	71	373	1	0	445	2	316	13	3	334	4	1	1	0	6	11	3	70	73	157	942
\% Pass Veh	97.3	94.9	100	0	95.3	100	95.8	81.2	100	95.2	100	100	100	0	85.7	64.7	100	97.2	96.1	93.5	94.9
Heavy Veh	2	15	0	0	17	0	11	3	0	14	0	0	0	1	1	6	0	,	3	10	42
\% Heayy Veh	2.7	3.8	0	0	3.6	0	3.3	18.8	0	4	0	0	0	100	14.3	35.3	0	1.4	3.9	6	4.2
School Bus	0	5	0	0	5	0	3	0	0	3	0	0	0	0	0	0	0	1	0		9
\% School Bus	0	1.3	0	0	1.1	0	0.9	0	0	0.9	0	0	0	0	0	0	0	1.4	0	0.6	0.9

Project: 112-023
File Name : tm112023a1
Site Code : 12-023-1
Start Date : 9/28/2012
Page No : 2

	Boices Ln Eastbound					Boices Ln Westbound					Driveway Northbound					John Clark Dr Southbound					
Start Time	Left	Thru	Right	RTOR	Averet	Left	Thru	Right	RTOR	Nas. Teas	Left	Thru	Right	RTOR	Nep 1 cent	Left	Thru	Righl	RTOR	A0p That	Int Total
Peak Hour Analysis From 7:15:00 AM to 8:45:00 AM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 8:00:00 AM																					
8:00:00 AM	9	55	0	0	64	0	42	2	0	44	1	0	0	0	1	2	1	7	17	27	136
8:15:00 AM	8	54	0	0	62	0	43	2	0	45	0	0	0	0	0	3	0	11	17	31	138
8:30:00 AM	14	55	1	0	70	0	46	2	0	48	1	0	0	0	1	4	1	11	8	24	143
8:45:00 AM	19	75	0	0	94	2	52	4	0	58	0	1	0	0	1	2	0	17	15	34	187
Total Volume	50	239	1	0	290	2	183	10	0	195	2	1	0	0	3	11	2	46	57	116	604
\% App. Total	17.2	82.4	0.3	0		1	93.8	5.1	0		66.7	33.3	0	0		9.5	1.7	39.7	49.1		
PHF	. 658	. 797	. 250	. 000	. 771	. 250	. 880	. 625	. 000	841	. 500	. 250	. 000	. 000	. 750	. 688	. 500	. 676	. 838	. 853	807
Pass Veh	48	223	1	0	272	2	174	9	0	185	2	1	0	0	3	7	2	44	55	108	568
\% Pass Veh	96.0	93.3	100	0	93.8	100	95.1	90.0	0	94.9	100	100	0	0	100	63.6	100	95.7	96.5	93.1	94.0
Heavy Veh	2	13	0	0	15	0	7	1	0	8	0	0	0	0	0	4	0	1	2	7	30
\% Heavy veh	4.0	5.4	0	0	5.2	0	3.8	10.0	0	4.1	0	0	0	0	0	36.4	0	2.2	3.5	6.0	5.0
School Bus	0	3	0	0	3	0	2	0	0	2	0	0	0	0	0	0	0	1	0	1	6
\% School Bus	0	1.3	0	0	1.0	0	1.1	0	0	1.0	0	0	0	0	0	0	0	2.2	0	0.9	1.0

Project: 09-024d
Counted By: DAT
Location: Ulster, NY
Other:
File Name : tm09024p4
Site Code : 09-024-4
Start Date : 4/28/2009
Page No : 1

	Boices Lane Eastbound					Boices Lane Westbound					Morton Boulevard Northbound					Tech City Driveway Southbound					
Start Time	Left	Thru	Right	RTOR	Mep Tow	Left	Thru	Right	RTOR	Approses	Left	Thru	Right	RTOR	ann Tear	Left	Thru	Right	RTOR	Acp Towd	Int Tolal
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
04:00 PM	0	75	49	21	145	50	77	0	0	127	70	2	30	13	115	0	0	0	0	0	387
04:15 PM	0	87	40	16	143	39	54	0	0	93	71	0	45	13	129	0	1	0	0	1	366
04:30 PM	0	125	77	26	228	43	74	0	0	117	77	1	38	6	122	5	0	0	0	5	472
04:45 PM	0	99	54	19	172	40	89	0	0	129	59	0	52	8	119	1	2	0	0	3	423
Total	0	386	220	82	688	172	294	0	0	466	277	3	165	40	485	6	3	0	0	9	1648
05:00 PM	0	103	57	22	182	44	77	0	0	121	87	1	44	7	139	0	1		0	1	443
05:15 PM	0	72	37	16	125	55	65	0	0	120	63	1	32	16	112	1	0	0	0	1	358
05:30 PM	0	77	44	22	143	30	71	2	0	103	58	0	31	9	98	1		0	0	1	345
05:45 PM	1	77	76	4	158	39	78	0	0	117	47	0	43	3	93	0	0	0	0	0	368
Total	1	329	214	64	608	168	291	2	0	461	255	2	150	35	442	2	1	0	0	3	1514
Grand Total	1	715	434	146	1296	340	585	2	0	927	532	5	315	75	927	8	,	0	0	12	3162
Apprch \%	0.1	55.2	33.5	11.3		36.7	63.1	0.2	0		57.4	0.5	34	8.1		66.7	33.3	0	0		
Total \%	0	22.6	13.7	4.6	41	10.8	18.5	0.1	0	29.3	16.8	0.2	10	2.4	29.3	0.3	0.1	0	0	0.4	
Pass Veh	1	711	428	146	1286	340	584	2	0	926	529	5	315	74	923	7	4	0	0	11	3146
\% Pass Veh	100	99.4	98.6	100	99.2	100	99.8	100	0	99.9	99.4	100	100	98.7	99.6	87.5	100	0	0	91.7	99.5
Heavy Veh	0	2	2	0		0	0	0	0	0	2	0	0	1	3	1	0	0	0	1	8
\% Heay Ven	0	0.3	0.5	0	0.3	0	0	0	0	0	0.4	0	0	1.3	0.3	12.5	0	0	0	8.3	0.3
School Bus	0	2	4	0	6	0	1	0	0	1	1	0	0	0	1	0	0	0	0	0	8
\% School Bus	0	0.3	0.9	0	0.5	0	0.2	0	0	0.1	0.2	0	0	0	0.1	0	0	0	0	0	0.3

Project: 09-024d
File Name : tm09024p4
Counted By: DAT
Location: Ulster, NY
Other:

Site Code : 09-024-4
Start Date : 4/28/2009
Page No : 2

	Boices Lane Eastbound					Boices Lane Westbound					Morton Boulevard Northbound					Tech City Driveway Southbound					
Start Time	Left	Thru	Right	RTOR	Anp leas	Left	Thru	Right	RTOR	App taus	Left	Thru	Right	RTOR	nope Teod	Left	Thru	Right	RTOR	Nax Teend	Int Totat
Peak Hour Analysis From 4:00:00 PM to 5:45:00 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 4:15:00 PM																					
4:15:00 PM	0	87	40	16	143	39	54	0	0	93	71	0	45	13	129	0	1	0	0	1	366
4:30:00 PM	0	125	77	26	228	43	74	0	0	117	77	1	38	6	122	5	0	0	0	5	472
4:45:00 PM	0	99	54	19	172	40	89	0	0	129	59	0	52	8	119	1	2	0	0	3	423
5:00:00 PM	0	103	57	22	182	44	77	0	0	121	87	1	44	7	139	0	1	0	0	1	443
Total Volume	0	414	228	83	725	166	294	0	0	460	294	2	179	34	509	6	4	0	0	10	1704
\% App. Total	0	57.1	31.4	11.4		36.1	63.9	0	0		57.8	0.4	35.2	6.7		60	40	0	0		
PHF	. 000	. 828	. 740	. 798	795	. 943	. 826	. 000	. 000	. 891	. 845	. 500	. 861	. 654	. 915	. 300	. 500	. 000	. 000	. 500	. 903
Pass Veh	0	412	227	83	722	166	293	0	0	459	292	2	179	33	506	5	4	0	0	9	1696
\% Pass Veh	0	99.5	99.6	100	99.6	100	99.7	0	0	99.8	99.3	100	100	97.1	99.4	83.3	100	0	0	90.0	99.5
Heavy Veh	0	1	0	0	1	0	0	0	0	0	1	0	0	1	2	1	0	0	0	1	4
\% Heavy veh	0	0.2	0	0	0.1	0	0	0	0	0	0.3	0	0	2.9	0.4	16.7	0	0	0	10.0	0.2
School Bus	0	1	1	0	2	0	1	0	0	1	1	0	0	0	1	0	0	0	0	0	4
\% School Bus	0	0.2	0.4	0	0.3	0	0.3	0	0	0.2	0.3	0	0	0	0.2	0	0	0	0	0	0.2

Project: 09-024d
Counted By: DPR
Location: Ulster, NY
Other:
File Name : tm09024p3
Site Code : 09-024-3
Start Date : 4/28/2009
Page No : 1

Groups Printed- Pass Veh - Heavy Veh - School Bus

	Boices Lane Eastbound					Boices Lane Westbound					Retail Driveway Northbound					John M Clark Road Southbound					
Start Time	Left	Thru	Right	RTOR	Ano Tate	Left	Thru	Right	RIOR	App, Teen	Left	Thru	Right	RTOR	Aop. Teand	Left	Thru	Right	RTOR	Ave Tount	Int. Totat
Factor	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0		
04:00 PM	19	97	8	0	124	4	76	5	0	85	4	1	1	1	7	7	4	25	28	64	280
04:15 PM	33	96	7	0	136	0	47	2	0	49	7	0	3	1	11	5	4	14	28	51	247
04:30 PM	37	127	4	0	168	0	71	4	0	75	4	2	2	0	8	11	1	13	21	46	297
04:45 PM	42	110	12	1	165	4	81	6	0	91	4	1	2	0	7	5	2	18	22	47	310
Total	131	430	31	1	593	8	275	17	0	300	19	4	8	2	33	28	11	70	99	208	1134
05:00 PM	31	94	5	4	134	3	66	0	1	70	7	1	0	1	9	3	0	10	33	46	259
05:15 PM	28	95	7	0	130	4	67	3	1	75	10	2	3	2	17	4	3	21	26	54	276
05:30 PM	28	87	5	1	121	2	58	6	0	66	4	2	2	2	10	4	0	13	26	43	240
05:45 PM	19	86	4	1	110	3	68	6	1	78	7	2	0	1	10	3	1	8	20	32	230
Total	106	362	21	6	495	12	259	15	3	289	28	7	5	6	46	14	4	52	105	175	1005
Grand Total	237	792	52	7	1088	20	534	32	3	589	47	11	13	8	79	42	15	122	204	383	2139
Apprch \%	21.8	72.8	4.8	0.6		3.4	90.7	5.4	0.5		59.5	13.9	16.5	10.1		11	3.9	31.9	53.3		
Total \%	11.1	37	2.4	0.3	50.9	0.9	25	1.5	0.1	27.5	2.2	0.5	0.6	0.4	3.7	2	0.7	5.7	9.5	17.9	
Pass Veh	237	785	51	7	1080	20	532	31	3	586	47	11	13	8	79	40	15	122	204	381	2126
\% Pass Veh	100	99.1	98.1	100	99.3	100	99.6	96.9	100	99.5	100	100	100	100	100	95.2	100	100	100	99.5	99.4
Heavy Veh	0	6	1	0	7	0	,	1	0	2	0	0	0	0	0	2	0	0	0	2	11
\% Heavy Veh	0	0.8	1.9	0	0.6	0	0.2	3.1	0	0.3	0	0	0	0	0	4.8	0	0	0	0.5	0.5
School Bus	0	1	0	0	1	0	1	0	0	1	0	0	0	0	0	0	0	0	0	0	2
\% School Bus	0	0.1	0	0	0.1	0	0.2	0	0	0.2	0	0	0	0	0	0	0	0	0	0	0.1

Project: 09-024d
File Name : tm09024p3
Counted By: DPR
Site Code : 09-024-3
Location: Ulster, NY
Start Date : 4/28/2009
Other:

	Boices Lane Eastbound					Boices Lane Westbound					Retail Driveway Northbound					John M Clark Road Southbound					
Start Time	Left	Thru	Right	RTOR	App Tolal	Left	Thru	Right	RTOR	Asp Tout	Left	Thru	Right	RTOR	Nap real	Left	Thru	Right	RTOR	Aspo Taw	Int Total
Peak Hour Analysis From 4:00:00 PM to 5:45:00 PM - Peak 1 of 1																					
Peak Hour for Entire Intersection Begins at 4:30:00 PM																					
4:30:00 PM	37	127	4	0	168	0	71	4	0	75	4	2	2	0	8	11	1	13	21	46	297
4:45:00 PM	42	110	12	1	165	4	81	6	0	91	4	1	2	0	7	5	2	18	22	47	310
5:00:00 PM	31	94	5	4	134	3	66	0	1	70	7	1	0	1	9	3	0	10	33	46	259
5:15:00 PM	28	95	7	0	130	4	67	3	1	75	10	2	3	2	17	4	3	21	26	54	276
Total Volume	138	426	28	5	597	11	285	13	2	311	25	6	7	3	41	23	6	62	102	193	1142
\% App. Tolal	23.1	71.4	4.7	0.8		3.5	91.6	4.2	0.6		61	14.6	17.1	7.3		11.9	3.1	32.1	52.8		
PHF	821	. 839	. 583	. 313	. 888	. 688	. 880	. 542	. 500	. 854	. 625	. 750	. 583	. 375	. 603	. 523	. 500	. 738	. 773	894	. 921
Pass Veh	138	425	27	5	595	11	284	13	2	310	25	6	7	3	41	22	6	62	102	192	1138
\% Pass Veh	100	99.8	96.4	100	99.7	100	99.6	100	100	99.7	100	100	100	100	100	95.7	100	100	100	99.5	99.6
Heavy Veh	0	1	1	0	2	0	1	0	0	1	0	0	0	0	0	1	0	0	0	1	4
\% Heavy Veh	0	0.2	3.6	0	0.3	0	0.4	0	0	0.3	0	0	0	0	0	4.3	0	0	0	0.5	0.4
School Bus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
\% School Bus	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Appendix C

Level of Service Analyses and Timing Reports

Railroad Crossing Study
Boices Lane
Town of Ulster, Ulster County, New York

LOS Definitions

The following is an excerpt from the 2000 Highway Capacity Manual (HCM).

Level of Service for Signalized Intersections

Level of service for a signalized intersection is defined in terms of control delay, which is a measure of driver discomfort, frustration, fuel consumption, and increased travel time. The delay experienced by a motorist is made up of a number of factors that relate to control, geometrics, traffic, and incidents. Total delay is the difference between the travel time actually experienced and the reference travel time that would result during base conditions: in the absence of traffic control, geometric delay, any incidents, and any other vehicles. Specifically, LOS criteria for traffic signals are stated in terms of the average control delay per vehicle, typically for a 15-minute analysis period. Delay is a complex measure and depends on a number of variables, including the quality of progression, the cycle length, the green ratio, and the v/c ratio for the lane group. Levels of service are defined to represent reasonable ranges in control delay.

LOS A describes operations with low control delay, up to 10 s/veh. This LOS occurs when progression is extremely favorable and most vehicles arrive during the green phase. Many vehicles do not stop at all. Short cycle lengths may tend to contribute to low delay.

LOS B describes operations with control delay greater than 10 and up to 20 s/veh. This level generally occurs with good progression, short cycle lengths, or both. More vehicles stop than with LOS A, causing higher levels of delay.

LOS C describes operations with control delay greater than 20 and up to $35 \mathrm{~s} / \mathrm{veh}$. These higher delays may result from only fair progression, longer cycle lengths, or both. Individual cycle failures may begin to appear at this level. Cycle failure occurs when a given green phase does not serve queued vehicles, and overflows occur. The number of vehicles stopping is significant at this level, though many still pass through the intersection without stopping.

LOS D describes operations with control delay greater than 35 and up to 55 s/veh. At LOS D, the influence of congestion becomes more noticeable. Longer delays may result from some combination of unfavorable progression, long cycle lengths, and high v/c ratios. Many vehicles stop, and the proportion of vehicles not stopping declines. Individual cycle failures are noticeable.

LOS E describes operations with control delay greater than 55 and up to 80 s/veh. These high delay values generally indicate poor progression, long cycle lengths, and high v/c ratios. Individual cycle failures are frequent.

LOS F describes operations with control delay in excess of $80 \mathrm{~s} / \mathrm{veh}$. This level, considered unacceptable to most drivers, often occurs with oversaturation, that is, when arrival flow rates exceed the capacity of lane groups. It may also occur at high v/c ratios with many individual cycle failures. Poor progression and long cycle lengths may also be contribute significantly to high delay levels.

Average control delay and queue length at roundabout controlled intersections are calculated using SIDRA Intersection. The physical geometry such as entry lane width and approach flare, and traffic volume at the roundabout are factors that influence the intersection's performance. The average delay reported using SIRA Intersection is based on the HCM Method of Delay for Level-of-Service.

Level of Service Criteria for Unsignalized Intersections

Four measures are used to describe the performance of two-way stop controlled intersections: control delay, delay to major street through vehicles, queue length, and v/c ratio. The primary measure that is used to provide an estimate of LOS is control delay. This measure can be estimated for any movement on the minor (i.e., stop-controlled) street. By summing delay estimates for individual movements, a delay estimate for each minor street movement and minor street approach can be achieved. The level of service criteria is given in Exhibit 17-2/22.

For all-way stop controlled (AWSC) intersections, the average control delay (in seconds per vehicle) is used as the primary measure of performance. Control delay is the increased time of travel for a vehicle approaching and passing through an AWSC intersection, compared with a free-flow vehicle if it were not required to slow or stop at the intersection.

Exhibit 17-2/22: Level-of-Service Criteria for Stop Controlled Intersections

Level of Service	Control Delay (sec/veh)
A	≤ 10.0
B	>10.0 and ≤ 15.0
C	>15.0 and ≤ 25.0
D	>25.0 and ≤ 35.0
E	>35.0 and ≤ 50.0
F	>50.0

c Critical Lane Group

Movement	H EBL	\rightarrow EBT	EBR	WBL	\leftarrow WBT		NBL	\uparrow NBT	NBR	¢ SBL	$\stackrel{\downarrow}{\frac{1}{\downarrow}}$	SBR
Lane Configurations		41			* ${ }^{1}$			\uparrow	「		\uparrow	7
Volume (vph)	142	439	34	13	281	13	25	6	10	23	6	161
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	12	12	12	10	10	11	11	11	11	12	12	16
Total Lost time (s)		3.0			3.0			3.0	3.0		3.0	3.0
Lane Util. Factor		0.95			0.95			1.00	1.00		1.00	1.00
Frpb, ped/bikes		1.00			1.00			1.00	1.00		1.00	1.00
Flpb, ped/bikes		1.00			1.00			1.00	1.00		1.00	1.00
Fit		0.99			0.99			1.00	0.85		1.00	0.85
Flt Protected		0.99			1.00			0.96	1.00		0.96	1.00
Satd. Flow (prot)		3502			3308			1767	1561		1773	1830
Fit Permitted		0.79			0.93			0.81	1.00		0.82	1.00
Satd. Flow (perm)		2795			3071			1491	1561		1504	1830
Peak-hour factor, PHF	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Adj. Flow (vph)	154	477	37	14	305	14	27	7	11	25	7	175
RTOR Reduction (vph)	0	4	0	0	3	0	0	0	9	0	0	0
Lane Group Flow (vph)	0	664	0	0	330	0	0	34	2	0	32	175
Confl. Peds. (\#/hr)	2					2						
Confl. Bikes (\#/hr)			1			1						
Heavy Vehicles (\%)	0\%	1\%	4\%	0\%	1\%	0\%	0\%	0\%	0\%	4\%	0\%	0\%
Turn Type p	pm+pt			Perm			Perm		Perm	Perm		Perm
Protected Phases	2	5			1			3			3	
Permitted Phases	5			1			3		3	3		3
Actuated Green, G (s)		48.8			39.3			11.2	11.2		11.2	11.2
Effective Green, g (s)		50.8			41.3			13.2	13.2		13.2	13.2
Actuated g/C Ratio		0.73			0.59			0.19	0.19		0.19	0.19
Clearance Time (s)		5.0			5.0			5.0	5.0		5.0	5.0
Vehicle Extension (s)		2.0			2.0			2.0	2.0		2.0	2.0
Lane Grp Cap (vph)		2094			1812			281	294		284	345
v/s Ratio Prot		c0.03										
v/s Ratio Perm		c0.20			0.11			0.02	0.00		0.02	c0.10
v/c Ratio		0.32			0.18			0.12	0.01		0.11	0.51
Uniform Delay, d1		3.4			6.6			23.6	23.1		23.5	25.5
Progression Factor		0.49			1.00			1.00	1.00		1.00	1.00
Incremental Delay, d2		0.0			0.2			0.1	0.0		0.1	0.4
Delay (s)		1.7			6.8			23.7	23.1		23.6	25.9
Level of Service		A			A			C	C		C	C
Approach Delay (s)		1.7			6.8			23.5			25.6	
Approach LOS		A			A			C			C	
Intersection Summary												
HCM Average Control Delay			7.8	HCM Level of Service					A			
HCM Volume to Capacity ratio			0.35									
Actuated Cycle Length (s)			70.0	Sum of lost time (s)					6.0			
Intersection Capacity Utilization			49.0\%	ICU Level of Service					A			
Analysis Period (min)			15									
C Critical Lane Group												

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

c Critical Lane Group

HCM Signalized Intersection Capacity Analysis

c Critical Lane Group

Movement	¢ EBL	\rightarrow EBT	EBR	WBL	$*$ WBT	4	NBL	\uparrow NBT	NBR	SBL	\downarrow SBT	¢
Lane Configurations		中4	$\stackrel{\square}{ }$		4	「'	\%	t		\%	\%	
Volume (vph)	0	586	410	0	431	72	366	34	234	179	92	26
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width	11	11	9	11	11	11	10	10	11	11	11	11
Total Lost time (s)		4.0	4.0		4.0	4.0	4.0	4.0		4.0	4.0	
Lane Util. Factor		0.95	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Frpb, ped/bikes		1.00	0.97		1.00	0.97	1.00	1.00		1.00	1.00	
Flpb, ped/bikes		1.00	1.00		1.00	1.00	1.00	1.00		1.00	1.00	
Frt		1.00	0.85		1.00	0.85	1.00	0.87		1.00	0.97	
Flt Protected		1.00	1.00		1.00	1.00	0.95	1.00		0.95	1.00	
Satd. Flow (prot)		3455	1400		1818	1522	1668	1541		1711	1776	
Flt Permitted		1.00	1.00		1.00	1.00	0.67	1.00		0.50	1.00	
Satd. Flow (perm)		3455	1400		1818	1522	1182	1541		895	1776	
Peak-hour factor, PHF	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90	0.90
Adj. Flow (vph)	0	651	456	0	479	80	407	38	260	199	102	29
RTOR Reduction (vph)	0	0	329	0	0	42	0	0	0	0	15	0
Lane Group Flow (vph)	0	651	127	0	479	38	407	298	0	199	116	0
Confl. Peds. (\#/hr)	5		4	4		5						
Heavy Vehicles (\%)	0\%	1\%	1\%	0\%	1\%	0\%	1\%	0\%	0\%	2\%	0\%	0\%
Turn Type			Perm			Perm	Perm			Perm		
Protected Phases		1			12			3			3	
Permitted Phases			1			12	3			3		
Actuated Green, G (s)		17.8	17.8		30.8	30.8	26.8	26.8		26.8	26.8	
Effective Green, g (s)		18.8	18.8		31.8	31.8	27.8	27.8		27.8	27.8	
Actuated g/C Ratio		0.28	0.28		0.47	0.47	0.41	0.41		0.41	0.41	
Clearance Time (s)		5.0	5.0				5.0	5.0		5.0	5.0	
Vehicle Extension (s)		2.0	2.0				2.0	2.0		2.0	2.0	
Lane Grp Cap (vph)		961	389		855	716	486	634		368	730	
v/s Ratio Prot		c0.19			c0.26			0.19			0.07	
v/s Ratio Perm			0.09			0.02	c0.34			0.22		
v/c Ratio		0.68	0.33		0.56	0.05	0.84	0.47		0.54	0.16	
Uniform Delay, d1		21.7	19.4		12.9	9.7	17.9	14.5		15.1	12.5	
Progression Factor		1.00	1.00		0.29	0.01	1.00	1.00		1.00	1.00	
Incremental Delay, d2		1.5	0.2		0.5	0.0	11.5	0.2		0.9	0.0	
Delay (s)		23.2	19.5		4.2	0.1	29.3	14.7		15.9	12.6	
Level of Service		C	B		A	A	C	B		B	B	
Approach Delay (s)		21.7			3.6			23.2			14.6	
Approach LOS		C			A			C			B	
Intersection Summary												
HCM Average Control Delay			17.5	HCM Level of Service					B			
HCM Volume to Capacity ratio			0.75									
Actuated Cycle Length (s)			67.6		Sum of los	time (s)			12.0			
Intersection Capacity Utilization			59.4\%		CU Level	Service			B			
Analysis Period (min)			15									

c Critical Lane Group

c Critical Lane Group

Lane Group	\rightarrow EBT	EBR	WBL	＋	NBL	\uparrow NBT	$\begin{gathered} p \\ \text { NBR } \end{gathered}$	SBL	\downarrow SBT	$\varnothing 7$
Lane Configurations	个	「	\％	\uparrow		\uparrow	「	4	F	
Volume（vph）	402	311	169	298	294	2	207	6	4	
Turn Type		pm＋ov	pm＋pt		pm＋pt		pm＋ov	Perm		
Protected Phases	2	4	1	6	4	74	1		3	7
Permitted Phases		2	6		74		74	3		
Detector Phase	2	4	1	6	4	74	1	3	3	
Switch Phase										
Minimum Initial（s）	10.0	3.0	3.0	10.0	3.0		3.0	5.0	5.0	5.0
Minimum Split（s）	15.0	8.0	8.0	15.0	8.0		8.0	10.0	10.0	10.0
Total Split（s）	40.0	21.0	21.0	61.0	21.0	67.0	21.0	25.0	25.0	46.0
Total Split（\％）	37．4\％	19．6\％	19．6\％	57．0\％	19．6\％	62．6\％	19．6\％	23．4\％	23．4\％	43\％
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0
All－Red Time（s）	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust（s）	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lead／Lag	Lag	Lag	Lead		Lag		Lead	Lead	Lead	
Lead－Lag Optimize？	Yes	Yes	Yes		Yes		Yes	Yes	Yes	
Recall Mode	Min	None	None	Min	None		None	None	None	None
Act Effct Green（s）	22.8	46.5	37.3	37.3		25.8	40.3	7.9	7.9	
Actuated g／C Ratio	0.32	0.65	0.52	0.52		0.36	0.56	0.11	0.11	
v / c Ratio	0.77	0.36	0.50	0.35		0.56	0.24	0.04	0.02	
Control Delay	34.3	3.2	15.7	12.6		24.5	3.2	38.3	38.0	
Queue Delay	0.0	0.0	0.0	0.1		0.0	0.0	0.0	0.0	
Total Delay	34.3	3.2	15.7	12.8		24.5	3.2	38.3	38.0	
LOS	C	A	B	B		C	A	D	D	
Approach Delay	20.7			13.8		15.7			38.2	
Approach LOS	C			B		B			D	
Intersection Summary										

Cycle Length： 107
Actuated Cycle Length： 71.9
Natural Cycle： 60
Control Type：Actuated－Uncoordinated
Maximum v／c Ratio： 0.77
Intersection Signal Delay： 17.4
Intersection Capacity Utilization 63．6\％
Analysis Period（min） 15

Intersection LOS：B
ICU Level of Service B

Splits and Phases：1：Boices Lane \＆Driveway

Lane Group	EBL	$\begin{aligned} & \rightarrow \\ & \overrightarrow{E B T} \end{aligned}$	WBL	\leftarrow WBT	WBR	4 NBL	\uparrow NBT	NBR	SBL	\downarrow SBT	\downarrow SBR
Lane Configurations		4t		*	F'		\uparrow	「		4	「
Volume (vph)	142	439	13	281	13	25	6	10	23	6	161
Turn Type	Perm		Perm		Perm	Perm		Perm	Perm		Perm
Protected Phases		5		1			3			3	
Permitted Phases	5		1		1	3		3	3		3
Detector Phase	5	5	1	1	1	3	3	3	3	3	3
Switch Phase											
Minimum Initial (s)	10.0	10.0	10.0	10.0	10.0	6.0	6.0	6.0	6.0	6.0	6.0
Minimum Split (s)	15.0	15.0	15.0	15.0	15.0	11.0	11.0	11.0	11.0	11.0	11.0
Total Split (s)	40.0	40.0	40.0	40.0	40.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (\%)	66.7\%	66.7\%	66.7\%	66.7\%	66.7\%	33.3\%	33.3\%	33.3\%	33.3\%	33.3\%	33.3\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lead/Lag											
Recall Mode	Max										
Act Effct Green (s)		37.0		37.0	37.0		17.0	17.0		17.0	17.0
Actuated g/C Ratio		0.62		0.62	0.62		0.28	0.28		0.28	0.28
v/c Ratio		0.38		0.30	0.01		0.08	0.02		0.07	0.27
Control Delay		6.4		6.4	2.5		16.5	9.2		16.4	4.5
Queue Delay		0.0		0.0	0.0		0.0	0.0		0.0	0.0
Total Delay		6.4		6.4	2.5		16.5	9.2		16.4	4.5
LOS		A		A	A		B	A		B	A
Approach Delay		6.4		6.2			14.7			6.4	
Approach LOS		A		A			B			A	

Intersection Summary
Cycle Length: 60
Actuated Cycle Length: 60
Offset: $10(17 \%)$, Referenced to phase 2: and 6:, Start of Green
Natural Cycle: 40
Control Type: Pretimed
Maximum v/c Ratio: 0.38
Intersection Signal Delay: 6.6
Intersection Capacity Utilization 51.2\%
Intersection LOS: A

Analysis Period (min) 15
ICU Level of Service A

Splits and Phases: 2: Boices Lane \& John Clark Drive

Timings
Existing 2012 - PM Peak Hour
1: Boices Lane \& Driveway
Existing 2012-Optimized_PM Peak

Lane Group	\rightarrow EBT	EBR	WBL	$*$ WBT	NBL	\dagger NBT	NBR	SBL	t SBT	$\varnothing 7$
Lane Configurations	\uparrow	\%	7	\uparrow		4	「	${ }^{1}$	\%	
Volume (vph)	402	311	169	298	294	2	207	6	4	
Turn Type		pm+ov	pm+pt		pm+pt		pm+ov	Perm		
Protected Phases	2	4	1	6	4	74	1		3	7
Permitted Phases		2	6		74		74	3		
Detector Phase	2	4	1	6	4	74	1	3	3	
Switch Phase										
Minimum Initial (s)	10.0	3.0	3.0	10.0	3.0		3.0	5.0	5.0	5.0
Minimum Split (s)	15.0	8.0	8.0	15.0	8.0		8.0	10.0	10.0	10.0
Total Split (s)	31.0	18.0	11.0	42.0	18.0	46.0	11.0	10.0	10.0	28.0
Total Split (\%)	44.3\%	25.7\%	15.7\%	60.0\%	25.7\%	65.7\%	15.7\%	14.3\%	14.3\%	40\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lag	Lag	Lead		Lag		Lead	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes		Yes	Yes	Yes	
Recall Mode	C-Min	None	None	C-Min	None		None	None	None	None
Act Effct Green (s)	29.2	48.5	40.6	40.6		21.4	32.8	6.1	6.1	
Actuated g/C Ratio	0.42	0.69	0.58	0.58		0.31	0.47	0.09	0.09	
v/c Ratio	0.59	0.32	0.47	0.31		0.66	0.31	0.05	0.02	
Control Delay	21.0	1.2	9.9	5.3		27.9	12.1	30.2	29.8	
Queue Delay	0.0	0.0	0.0	0.3		0.0	0.0	0.0	0.0	
Total Delay	21.0	1.2	9.9	5.6		27.9	12.1	30.2	29.8	
LOS	C	A	A	A		C	B	C	C	
Approach Delay	12.4			7.2		21.4			30.0	
Approach LOS	B			A		C			C	

Intersection Summary
Cycle Length: 70
Actuated Cycle Length: 70
Offset: $0(0 \%)$, Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow, Master Intersection
Natural Cycle: 50
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.66

Intersection Signal Delay: 13.7
Intersection Capacity Utilization 63.6\%
Analysis Period (min) 15

Intersection LOS: B
ICU Level of Service B

Splits and Phases: 1: Boices Lane \& Driveway

Lane Group	EBL	$\begin{aligned} & \rightarrow \\ & E B T \end{aligned}$	WBL	\leftarrow WBT	WBR	NBL	\dagger NBT	NBR	SBL	\downarrow SBT	$\stackrel{\downarrow}{\text { SBR }}$
Lane Configurations		41.		\uparrow	7		*	7		*	「
Volume (vph)	142	439	13	281	13	25	6	10	23	6	161
Turn Type	pm+pt		Perm		Perm	Perm		Perm	Perm		Perm
Protected Phases		5		1			3			3	
Permitted Phases	5		1		1	3		3	3		3
Detector Phase	2	5	1	1	1	3	3	3	3	3	3
Switch Phase											
Minimum Initial (s)	3.0	10.0	10.0	10.0	10.0	6.0	6.0	6.0	6.0	6.0	6.0
Minimum Split (s)	8.0	15.0	15.0	15.0	15.0	11.0	11.0	11.0	11.0	11.0	11.0
Total Split (s)	8.0	47.0	39.0	39.0	39.0	23.0	23.0	23.0	23.0	23.0	23.0
Total Split (\%)	11.4\%	67.1\%	55.7\%	55.7\%	55.7\%	32.9\%	32.9\%	32.9\%	32.9\%	32.9\%	32.9\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lead/Lag	Lag		Lead	Lead	Lead						
Lead-Lag Optimize?	Yes		Yes	Yes	Yes						
Recall Mode	Min	C-Min	C-Min	C-Min	C-Min	None	None	None	None	None	None
Act Efftt Green (s)		50.8		41.3	41.3		13.2	13.2		13.2	13.2
Actuated g/C Ratio		0.73		0.59	0.59		0.19	0.19		0.19	0.19
v / C Ratio		0.32		0.32	0.02		0.12	0.04		0.11	0.51
Control Delay		1.6		9.2	4.2		22.7	11.5		22.6	30.0
Queue Delay		0.0		0.0	0.0		0.0	0.0		0.0	0.0
Total Delay		1.6		9.2	4.2		22.7	11.5		22.6	30.0
LOS		A		A	A		C	B		C	C
Approach Delay		1.6		9.0			20.0			28.8	
Approach LOS		A		A			B			C	

Approach LOS
A
B
Intersection Summary
Cycle Length: 70
Actuated Cycle Length: 70
Offset: $64(91 \%)$, Referenced to phase 1:WBTL and 5:EBTL, Start of Green
Natural Cycle: 40
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.51
Intersection Signal Delay: 8.7
Intersection Capacity Utilization 51.2\%
Intersection LOS: A
ICU Level of Service A
Analysis Period (min) 15
Splits and Phases: 2: Boices Lane \& John Clark Drive

Lane Group	\rightarrow EBT	EBR	WBL	$*$ WBT	4 NBL	\uparrow NBT	NBR	SBL	$\stackrel{\downarrow}{\downarrow}$	97
Lane Configurations	${ }^{4} \uparrow$	$\stackrel{7}{7}$	${ }^{7}$	F		${ }^{*}$	7	\%	t	
Volume (vph)	402	311	169	298	294	2	207	6	4	
Turn Type		pm+ov	pm+pt		pm+pt		pm+ov	Perm		
Protected Phases	2	4	1	6	4	74	1		3	7
Permitted Phases		2	6		74		74	3		
Detector Phase	2	4	1	6	4	74	1	3	3	
Switch Phase										
Minimum Initial (s)	10.0	3.0	3.0	10.0	3.0		3.0	5.0	5.0	5.0
Minimum Split (s)	15.0	8.0	8.0	15.0	8.0		8.0	10.0	10.0	10.0
Total Split (s)	23.0	23.0	14.0	37.0	23.0	56.0	14.0	10.0	10.0	33.0
Total Split (\%)	32.9\%	32.9\%	20.0\%	52.9\%	32.9\%	80.0\%	20.0\%	14.3\%	14.3\%	47\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lag	Lag	Lead		Lag		Lead	Lead	Lead	
Lead-Lag Optimize?	Yes	Yes	Yes		Yes		Yes	Yes	Yes	
Recall Mode	C-Min	None	None	C-Min	None		None	None	None	None
Act Effct Green (s)	26.2	46.9	39.1	39.1		22.9	35.8	6.3	6.3	
Actuated g/C Ratio	0.37	0.67	0.56	0.56		0.33	0.51	0.09	0.09	
v/c Ratio	0.35	0.32	0.37	0.33		0.61	0.29	0.05	0.02	
Control Delay	18.9	1.4	7.8	6.4		24.4	9.5	29.7	29.2	
Queue Delay	0.0	0.0	0.0	0.3		0.0	0.0	0.0	0.0	
Total Delay	18.9	1.4	7.8	6.7		24.4	9.5	29.7	29.2	
LOS	B	A	A	A		C	A	C	C	
Approach Delay	11.2			7.1		18.2			29.5	
Approach LOS	B			A		B			C	

Intersection Summary
Cycle Length: 70
Actuated Cycle Length: 70
Offset: $0(0 \%)$, Referenced to phase 2:EBTL and 6:WBTL, Start of Yellow, Master Intersection
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.61
Intersection Signal Delay: 12.3
Intersection Capacity Utilization 62.1\%
Intersection LOS: B
ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 1: Boices Lane \& Driveway

Lane Group	EBL	$\begin{aligned} & \rightarrow \\ & \text { EBT } \end{aligned}$	WBL	\leftarrow WBT	NBL	\uparrow NBT	NBR	SBL	$\frac{1}{\dagger}$ SBT	SBR
Lane Configurations		46		*\%		*	\%		\uparrow	「'
Volume (vph)	142	439	13	281	25	6	10	23	6	161
Turn Type	pm+pt		Perm		Perm		Perm	Perm		Perm
Protected Phases	2	5		1		3			3	
Permitted Phases	5		1		3		3	3		3
Detector Phase	2	5	1	1	3	3	3	3	3	3
Switch Phase										
Minimum Initial (s)	3.0	10.0	10.0	10.0	6.0	6.0	6.0	6.0	6.0	6.0
Minimum Split (s)	8.0	15.0	15.0	15.0	11.0	11.0	11.0	11.0	11.0	11.0
Total Split (s)	16.0	44.0	28.0	28.0	26.0	26.0	26.0	26.0	26.0	26.0
Total Split (\%)	22.9\%	62.9\%	40.0\%	40.0\%	37.1\%	37.1\%	37.1\%	37.1\%	37.1\%	37.1\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lead/Lag	Lag		Lead	Lead						
Lead-Lag Optimize?	Yes		Yes	Yes						
Recall Mode	Min	C-Min	C-Min	C-Min	None	None	None	None	None	None
Act Effet Green (s)		50.8		41.3		13.2	13.2		13.2	13.2
Actuated g/C Ratio		0.73		0.59		0.19	0.19		0.19	0.19
v / c Ratio		0.32		0.18		0.12	0.04		0.11	0.51
Control Delay		2.3		7.5		22.6	11.4		22.5	29.8
Queue Delay		0.0		0.0		0.0	0.0		0.0	0.0
Total Delay		2.3		7.5		22.6	11.4		22.5	29.8
LOS		A		A		C	B		C	C
Approach Delay		2.3		7.5		19.9			28.7	
Approach LOS		A		A		B			C	
Intersection Summary										

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 2 (3\%), Referenced to phase 1:WBTL and 5:EBTL, Start of Green
Natural Cycle: 40
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.51
Intersection Signal Delay: 8.7
Intersection Capacity Utilization 49.0\%
Analysis Period (min) 15

Splits and Phases: 2: Boices Lane \& John Clark Drive

Lane Group	$\xrightarrow[\text { EBT }]{\rightarrow}$	$\underset{\text { EBR }}{\nu}$	WBL	WBT	NBL	\dagger NBT	NBR	SBL	\downarrow SBT	ø2	$\varnothing 4$
Lane Configurations	\uparrow	7	*	\uparrow		*	7	7	${ }_{5}$		
Volume (vph)	402	311	169	298	294	2	207	6	4		
Turn Type		Perm	Split		Perm		Perm	Perm			
Protected Phases	1		24	24		3			3	2	4
Permitted Phases		1			3		3	3			
Detector Phase	1	1	24	24	3	3	3	3	3		
Switch Phase											
Minimum Initial (s)	3.0	3.0			5.0	5.0	5.0	5.0	5.0	3.0	5.0
Minimum Split (s)	8.0	8.0			10.0	10.0	10.0	10.0	10.0	8.0	10.0
Total Split (s)	27.0	27.0	33.0	33.0	30.0	30.0	30.0	30.0	30.0	20.0	13.0
Total Split (\%)	30.0\%	30.0\%	36.7\%	36.7\%	33.3\%	33.3\%	33.3\%	33.3\%	33.3\%	22\%	14\%
Yellow Time (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0		
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0		
Lead/Lag	Lag	Lag			Lead	Lead	Lead	Lead	Lead	Lead	Lag
Lead-Lag Optimize?	Yes	Yes			Yes						
Recall Mode	C-Min	C-Min			None						
Act Efft Green (s)	23.0	23.0	29.8	29.8		25.2	25.2	25.2	25.2		
Actuated g/C Ratio	0.26	0.26	0.33	0.33		0.28	0.28	0.28	0.28		
v / c Ratio	0.96	0.60	0.33	0.55		0.92	0.53	0.05	0.01		
Control Delay	68.1	11.0	13.0	14.0		64.4	32.1	24.3	23.0		
Queue Delay	0.0	0.0	0.0	0.6		0.0	0.0	0.0	0.0		
Total Delay	68.1	11.0	13.0	14.6		64.4	32.1	24.3	23.0		
LOS	E	B	B	B		E	C	C	C		
Approach Delay	43.2			14.0		51.1			23.8		
Approach LOS	D			B		D			C		

Intersection Summary

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 1:EBTL, Start of Yellow, Master Intersection
Natural Cycle: 75
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.96
Intersection Signal Delay: 37.4
Intersection Capacity Utilization 63.6\%
Intersection LOS: D
ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 1: Boices Lane \& Driveway

Timings
Existing 2012 - PM Peak Hour
Existing 2012 - Split Phased_PM Peak

Lane Group	$\begin{aligned} & \rightarrow \\ & \overrightarrow{E B T} \end{aligned}$	\leftarrow WBT	4 WBR	4 NBL	¢ NBT	NBR	SBL	$\begin{gathered} \downarrow \\ \text { SBT } \\ \hline \end{gathered}$	$\stackrel{\downarrow}{\text { SBR }}$	$\varnothing 1$	$ø 3$
Lane Configurations	${ }^{\text {4t }}$	\uparrow	7		\uparrow	F		${ }^{+}$	「		
Volume (vph)	439	281	13	25	6	10	23	6	161		
Turn Type			Perm	Perm		Perm	Perm		Perm		
Protected Phases	13	2			4			4		1	3
Permitted Phases			2	4		4	4		4		
Detector Phase	13	2	2	4	4	4	4	4	4		
Switch Phase											
Minimum Initial (s)		3.0	3.0	5.0	5.0	5.0	5.0	5.0	5.0	3.0	5.0
Minimum Split (s)		8.0	8.0	10.0	10.0	10.0	10.0	10.0	10.0	8.0	10.0
Total Split (s)	57.0	20.0	20.0	13.0	13.0	13.0	13.0	13.0	13.0	27.0	30.0
Total Split (\%)	63.3\%	22.2\%	22.2\%	14.4\%	14.4\%	14.4\%	14.4\%	14.4\%	14.4\%	30\%	33\%
Yellow Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0		
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Lead/Lag		Lead	Lead	Lag	Lead						
Lead-Lag Optimize?		Yes									
Recall Mode		None	C-Min	None							
Act Effct Green (s)	53.2	17.2	17.2		10.6	10.6		10.6	10.6		
Actuated g/C Ratio	0.59	0.19	0.19		0.12	0.12		0.12	0.12		
v/c Ratio	0.32	0.95	0.05		0.20	0.06		0.19	0.81		
Control Delay	0.7	77.0	15.0		39.7	19.9		39.4	69.0		
Queue Delay	0.3	0.0	0.0		0.0	0.0		0.0	0.0		
Total Delay	1.1	77.0	15.0		39.7	19.9		39.4	69.0		
LOS	A	E	B		D	B		D	E		
Approach Delay	1.1	74.4			34.9			64.4			
Approach LOS	A	E			C			E			
Intersection Summary											

Cycle Length: 90
Actuated Cycle Length: 90
Offset: $0(0 \%)$, Referenced to phase 1:EBTL, Start of Yellow, Master Intersection
Natural Cycle: 75
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.96
Intersection Signal Delay: 32.2
Intersection Capacity Utilization 51.2\%
Intersection LOS: C
Analysis Period (min) 15
Splits and Phases: 2: Boices Lane \& John Clark Drive

Lane Group	\rightarrow EBT	EBR	WBL	\bullet WBT	WBR	NBL	\dagger NBT	p NBR	SBL	\downarrow SBT	07
Lane Configurations	\uparrow	「	7	\uparrow	「		\uparrow	「	\％	F	
Volume（vph）	646	410	206	431	72	366	34	254	199	92	
Turn Type		pm＋ov	pm＋pt		Perm	pm＋pt		pm＋ov	Perm		
Protected Phases	2	4	1	6		4	74	1		3	7
Permitted Phases		2	6		6	74		74	3		
Detector Phase	2	4	1	6	6	4	74	1	3	3	
Switch Phase											
Minimum Initial（s）	10.0	3.0	3.0	10.0	10.0	3.0		3.0	5.0	5.0	5.0
Minimum Split（s）	15.0	8.0	8.0	15.0	15.0	8.0		8.0	10.0	10.0	10.0
Total Split（s）	41.0	8.0	11.0	52.0	52.0	8.0	56.0	11.0	40.0	40.0	48.0
Total Split（\％）	41．0\％	8．0\％	11．0\％	52．0\％	52．0\％	8．0\％	56．0\％	11．0\％	40．0\％	40．0\％	48\％
Yellow Time（s）	4.0	4.0	4.0	4.0	4.0	4.0		4.0	4.0	4.0	4.0
All－Red Time（s）	1.0	1.0	1.0	1.0	1.0	1.0		1.0	1.0	1.0	1.0
Lost Time Adjust（s）	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	－1．0	
Total Lost Time（s）	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lead／Lag	Lag	Lag	Lead			Lag		Lead	Lead	Lead	
Lead－Lag Optimize？	Yes	Yes	Yes			Yes		Yes	Yes	Yes	
Recall Mode	C－Min	None	None	C－Min	C－Min	None		None	None	None	None
Act Effct Green（s）	37.0	41.0	48.0	48.0	48.0		44.0	55.0	36.0	36.0	
Actuated g／C Ratio	0.37	0.41	0.48	0.48	0.48		0.44	0.55	0.36	0.36	
v／c Ratio	1.07	0.62	1.17	0.55	0.10		0.87	0.33	1.12	0.20	
Control Delay	85.9	11.7	144.5	20.3	5.9		45.2	13.7	133.6	20.3	
Queue Delay	0.0	0.0	0.0	3.2	0.0		0.0	0.0	40.2	0.0	
Total Delay	85.9	11.7	144.5	23.5	5.9		45.2	13.7	173.8	20.3	
LOS	F	B	F	C	A		D	B	F	C	
Approach Delay	57.1			56.9			33.0			116.7	
Approach LOS	E			E			C			F	
Intersection Summary											

Cycle Length： 100
Actuated Cycle Length： 100
Offset： 0 （0\％），Referenced to phase 2：EBT and 6：WBTL，Start of Yellow，Master Intersection
Natural Cycle： 100
Control Type：Actuated－Coordinated
Maximum v／c Ratio： 1.17
Intersection Signal Delay： 58.2
Intersection Capacity Utilization 84．1\％
Intersection LOS：E
Analysis Period（min） 15
ICU Level of Service E

Splits and Phases：1：Boices Lane \＆Driveway

Lane Group	$*$ EBL	\rightarrow EBT	WBL	- WBT	WBR	4 NBL	4 NBT	NBR N	SBL	$\stackrel{\downarrow}{\dagger}$	SBR
Lane Configurations		* ${ }^{\text {t }}$		4	7		\uparrow	「		4	「
Volume (vph)	202	855	13	469	18	29	7	12	28	7	211
Turn Type	pm+pt		Perm		Perm	Perm		Perm	Perm		Perm
Protected Phases	2	5		1			3			3	
Permitted Phases	5		1		1	3		3	3		3
Detector Phase	2	5	1	1	1	3	3	3	3	3	3
Switch Phase											
Minimum Initial (s)	3.0	10.0	10.0	10.0	10.0	6.0	6.0	6.0	6.0	6.0	6.0
Minimum Split (s)	8.0	15.0	15.0	15.0	15.0	11.0	11.0	11.0	11.0	11.0	11.0
Total Split (s)	8.0	67.0	59.0	59.0	59.0	33.0	33.0	33.0	33.0	33.0	33.0
Total Split (\%)	8.0\%	67.0\%	59.0\%	59.0\%	59.0\%	33.0\%	33.0\%	33.0\%	33.0\%	33.0\%	33.0\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lead/Lag	Lag		Lead	Lead	Lead						
Lead-Lag Optimize?	Yes		Yes	Yes	Yes						
Recall Mode	Min	C-Min	C-Min	C-Min	C-Min	None	None	None	None	None	None
Act Effct Green (s)		74.9		63.4	63.4		19.1	19.1		19.1	19.1
Actuated g/C Ratio		0.75		0.63	0.63		0.19	0.19		0.19	0.19
v / c Ratio		0.63		0.49	0.02		0.14	0.04		0.13	0.65
Control Delay		10.5		13.3	4.5		32.5	14.2		32.3	45.8
Queue Delay		2.9		0.1	0.0		0.0	0.0		0.0	0.0
Total Delay		13.4		13.4	4.5		32.5	14.2		32.3	45.8
LOS		B		B	A		C	B		C	D
Approach Delay		13.4		13.1			28.0			43.9	
Approach LOS		B		B			C			D	

Intersection Summary

Cycle Length: 100
Actuated Cycle Length: 100
Offset: 18 (18\%), Referenced to phase 1:WBTL and 5:EBTL, Start of Green
Natural Cycle: 45
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.65
Intersection Signal Delay: 17.6
Intersection Capacity Utilization 74.9\%
Intersection LOS: B
ICU Level of Service D
Analysis Period (min) 15
Splits and Phases: 2: Boices Lane \& John Clark Drive

Lane Group	\rightarrow EBT	EBR	WBL	\leftarrow WBT	WBR	$*$ NBL	\uparrow NBT	SBL	$\frac{1}{\downarrow}$ SBT
Lane Configurations	$\uparrow \uparrow$	7	${ }^{7}$	\uparrow	$\stackrel{\square}{7}$	7	F	\%	¢
Volume (vph)	646	410	206	431	72	366	34	199	92
Turn Type		pm+ov	pm+pt		Perm	pm+pt		pm+pt	
Protected Phases	2	7	1	6		7	4	3	8
Permitted Phases		2	6		6	4		8	
Detector Phase	2	7	1	6	6	7	4	3	8
Switch Phase									
Minimum Initial (s)	10.0	3.0	3.0	10.0	10.0	3.0	3.0	5.0	3.0
Minimum Split (s)	15.0	8.0	8.0	15.0	15.0	8.0	8.0	10.0	8.0
Total Split (s)	25.0	20.0	11.0	36.0	36.0	20.0	23.0	11.0	14.0
Total Split (\%)	35.7\%	28.6\%	15.7\%	51.4\%	51.4\%	28.6\%	32.9\%	15.7\%	20.0\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag	Lag	Lead	Lead			Lead	Lag	Lead	Lag
Lead-Lag Optimize?	Yes	Yes	Yes			Yes	Yes	Yes	Yes
Recall Mode	C-Min	None	None	C-Min	C-Min	None	None	None	None
Act Effct Green (s)	20.5	38.8	32.1	32.1	32.1	29.9	17.5	16.7	9.5
Actuated g/C Ratio	0.29	0.55	0.46	0.46	0.46	0.43	0.25	0.24	0.14
v/c Ratio	0.71	0.49	0.77	0.57	0.11	0.73	0.83	0.68	0.51
Control Delay	26.7	4.3	36.5	15.4	3.1	25.1	44.5	29.0	31.6
Queue Delay	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0
Total Delay	26.7	4.3	36.5	15.9	3.1	25.1	44.5	29.0	31.6
LOS	C	A	D	B	A	C	D	C	C
Approach Delay	18.0			20.6			33.6		30.0
Approach LOS	B			C			C		C
Intersection Summary									

Cycle Length: 70
Actuated Cycle Length: 70
Offset: $0(0 \%)$, Referenced to phase 2:EBT and 6:WBTL, Start of Yellow, Master Intersection
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.83
Intersection Signal Delay: 23.8
Intersection Capacity Utilization 71.1\%
Intersection LOS: C
ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 1: Boices Lane \& Driveway

Timings
Build - PM Peak Hour
Build - Alternative 1_PM Peak

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 62 (89\%), Referenced to phase 1:WBTL and 5:EBTL, Start of Green
Natural Cycle: 40
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.64
Intersection Signal Delay: 10.7
Intersection LOS: B
Intersection Capacity Utilization 63.4\%
ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 2: Boices Lane \& John Clark Drive

Lane Group	\rightarrow	EBR	$+$	4NBL	NBT		
Lane Configurations	+ \uparrow	7	4	\%	t	7	\uparrow
Volume (vph)	646	410	431	366	34	199	298
Turn Type		pm+ov		pm+pt		pm+pt	
Protected Phases	2	4	6	4	7	8	3
Permitted Phases		2		7		3	
Detector Phase	2	4	6	4	7	8	3
Switch Phase							
Minimum Initial (s)	10.0	3.0	10.0	3.0	5.0	3.0	5.0
Minimum Split (s)	15.0	8.0	15.0	8.0	10.0	8.0	10.0
Total Split (s)	28.0	22.0	28.0	22.0	27.0	15.0	20.0
Total Split (\%)	40.0\%	31.4\%	40.0\%	31.4\%	38.6\%	21.4\%	28.6\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Lead/Lag		Lead		Lead	Lag	Lead	Lag
Lead-Lag Optimize?		Yes		Yes	Yes	Yes	Yes
Recall Mode	C-Min	None	C-Min	None	None	None	None
Act Effct Green (s)	25.8	42.1	25.8	36.2	22.5	25.7	15.9
Actuated g/C Ratio	0.37	0.60	0.37	0.52	0.32	0.37	0.23
v/c Ratio	0.56	0.50	0.71	0.83	0.65	0.47	0.86
Control Delay	20.3	5.8	25.4	30.2	27.3	13.6	48.5
Queue Delay	0.0	0.0	0.6	0.0	0.0	0.0	0.0
Total Delay	20.3	5.8	26.1	30.2	27.3	13.6	48.5
LOS	C	A	C	C	C	B	D
Approach Delay	14.7		26.1		28.9		35.2
Approach LOS	B		C		C		D
Intersection Summary							

Cycle Length: 70
Actuated Cycle Length: 70
Offset: $0(0 \%)$, Referenced to phase 2:EBT and 6:WBT, Start of Yellow, Master Intersection
Natural Cycle: 60
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.86
Intersection Signal Delay: $24.0 \quad$ Intersection LOS: C
Intersection Capacity Utilization $70.2 \% \quad$ ICU Level of Service C
Analysis Period (min) 15
Splits and Phases: 1: Boices Lane \& Driveway

Lane Group	4 EBL	\rightarrow EBT	WBL	\leftarrow WBT	4 NBL	\uparrow NBT	NBR	SBL	\downarrow SBT	SBR
Lane Configurations		* 1		* ${ }^{\text {\% }}$		*	7		4	「
Volume (vph)	202	855	13	469	29	7	12	28	7	211
Turn Type	pm+pt		Perm		Perm		Perm	Perm		Perm
Protected Phases	2	5		1		3			3	
Permitted Phases	5		1		3		3	3		3
Detector Phase	2	5	1	1	3	3	3	3	3	3
Switch Phase										
Minimum Initial (s)	3.0	10.0	10.0	10.0	6.0	6.0	6.0	6.0	6.0	6.0
Minimum Split (s)	8.0	15.0	15.0	15.0	11.0	11.0	11.0	11.0	11.0	11.0
Total Split (s)	25.0	50.0	25.0	25.0	20.0	20.0	20.0	20.0	20.0	20.0
Total Split (\%)	35.7\%	71.4\%	35.7\%	35.7\%	28.6\%	28.6\%	28.6\%	28.6\%	28.6\%	28.6\%
Yellow Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
Lead/Lag	Lead		Lag	Lag						
Lead-Lag Optimize?	Yes		Yes	Yes						
Recall Mode	Min	C-Min	C-Min	C-Min	None	None	None	None	None	None
Act Effct Green (s)		49.6		40.1		14.4	14.4		14.4	14.4
Actuated g/C Ratio		0.71		0.57		0.21	0.21		0.21	0.21
v/c Ratio		0.64		0.31		0.13	0.04		0.12	0.61
Control Delay		5.4		8.7		22.5	11.3		22.4	32.1
Queue Delay		0.2		0.0		0.0	0.0		0.0	0.0
Total Delay		5.7		8.8		22.5	11.3		22.4	32.1
LOS		A		A		C	B		C	C
Approach Delay		5.7		8.8		19.8			30.7	
Approach LOS		A		A		B			C	
Intersection Summary										

Cycle Length: 70
Actuated Cycle Length: 70
Offset: 62 (89\%), Referenced to phase 1:WBTL and 5:EBTL, Start of Green
Natural Cycle: 40
Control Type: Actuated-Coordinated
Maximum v/c Ratio: 0.64
Intersection Signal Delay: 10.1
Intersection Capacity Utilization 63.4\%
Analysis Period (min) 15

Intersection LOS: B
ICU Level of Service B

Splits and Phases: 2: Boices Lane \& John Clark Drive

Timings
Build - PM Peak Hour

Lane Group	$\begin{gathered} \rightarrow \\ \text { EBT } \end{gathered}$	EBR	\leftarrow WBT	$\begin{gathered} 4 \\ \text { WBR } \end{gathered}$	$\begin{gathered} 4 \\ \text { NBL } \end{gathered}$	NBT	$\begin{gathered} 8 \\ \text { SBL } \end{gathered}$	$\begin{gathered} \downarrow \\ \text { SBT } \end{gathered}$	$\varnothing 2$
Lane Configurations	$\uparrow \uparrow$	7	\uparrow	「	\%	¢	\%	+	
Volume (vph)	586	410	431	72	366	34	179	92	
Turn Type		Perm		Perm	Perm		Perm		
Protected Phases	1		12			3		3	2
Permitted Phases		1		12	3		3		
Detector Phase	1	1	12	12	3	3	3	3	
Switch Phase									
Minimum Initial (s)	10.0	10.0			5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	15.0	15.0			10.0	10.0	10.0	10.0	10.0
Total Split (s)	23.0	23.0	36.0	36.0	34.0	34.0	34.0	34.0	13.0
Total Split (\%)	32.9\%	32.9\%	51.4\%	51.4\%	48.6\%	48.6\%	48.6\%	48.6\%	19\%
Yellow Time (s)	4.0	4.0			4.0	4.0	4.0	4.0	4.0
All-Red Time (s)	1.0	1.0			1.0	1.0	1.0	1.0	1.0
Lost Time Adjust (s)	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	-1.0	
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
Lead/Lag	Lag	Lag							
Lead-Lag Optimize?	Yes	Yes							Yes
Recall Mode	Min	Min			None	None	None	None	None
Act Effct Green (s)	18.8	18.8	31.8	31.8	27.8	27.8	27.8	27.8	
Actuated g/C Ratio	0.28	0.28	0.47	0.47	0.41	0.41	0.41	0.41	
v / c Ratio	0.68	0.64	0.56	0.11	0.84	0.47	0.54	0.18	
Control Delay	26.6	7.0	6.5	0.3	35.5	17.4	21.5	10.7	
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Total Delay	26.6	7.0	6.5	0.3	35.5	17.4	21.5	10.7	
LOS	C	A	A	A	D	B	C	B	
Approach Delay	18.5		5.6			27.8		17.2	
Approach LOS	B		A			C		B	
Intersection Summary									

Cycle Length: 70
Actuated Cycle Length: 67.7
Natural Cycle: 55
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.84
Intersection Signal Delay: 18.1
Intersection Capacity Utilization 59.4\%
Intersection LOS: B
ICU Level of Service B
Analysis Period (min) 15
Splits and Phases: 1: Boices Lane \& Driveway

Timings
Build - PM Peak Hour

Build - Alternative 3_PM Peak											
	\rightarrow	7	\leftarrow	4	4	1	t	\downarrow	\checkmark		
Lane Group	EBT	WBL	WBT	NBL	NBT	NBR	SBL	SBT	SBR		3
Lane Configurations	性		*t		*	F'		4	F		
Volume (vph)	957	13	335	19	7	22	59	7	149		
Turn Type		Perm		Perm		Perm	Perm		Perm		
Protected Phases	13		1		2			2			3
Permitted Phases		1		2		2	2		2		
Detector Phase	13	1	1	2	2	2	2	2	2		
Switch Phase											
Minimum Initial (s)		10.0	10.0	5.0	5.0	5.0	5.0	5.0	5.0	5.	
Minimum Split (s)		15.0	15.0	10.0	10.0	10.0	10.0	10.0	10.0	10.	
Total Split (s)	57.0	23.0	23.0	13.0	13.0	13.0	13.0	13.0	13.0	34.	
Total Split (\%)	81.4\%	32.9\%	32.9\%	18.6\%	18.6\%	18.6\%	18.6\%	18.6\%	18.6\%	49\%	
Yellow Time (s)		4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.	
All-Red Time (s)		1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	
Lost Time Adjust (s)	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0	-2.0		
Total Lost Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0		
Lead/Lag		Lag	Lag	Lead	Lead	Lead	Lead	Lead	Lead		
Lead-Lag Optimize?		Yes									
Recall Mode		Min	Min	None	None	None	None	None	None	Non	
Act Effct Green (s)	51.6		19.8		10.0	10.0		10.0	10.0		
Actuated g/C Ratio	0.76		0.29		0.15	0.15		0.15	0.15		
v / c Ratio	0.40		0.45		0.13	0.10		0.36	0.60		
Control Delay	0.8		21.7		28.0	12.5		33.1	38.6		
Queue Delay	0.2		0.0		0.0	0.0		0.0	0.0		
Total Delay	0.9		21.7		28.0	12.5		33.1	38.6		
LOS	A		C		C	B		C	D		
Approach Delay	0.9		21.7		21.0			36.9			
Approach LOS	A		C		C			D			
Intersection Summary											

Cycle Length: 70
Actuated Cycle Length: 67.7
Natural Cycle: 55
Control Type: Actuated-Uncoordinated
Maximum v/c Ratio: 0.84
Intersection Signal Delay: 11.0
Intersection Capacity Utilization 46.1\%
Analysis Period (min) 15
Splits and Phases: 2: Boices Lane \& John Clark Drive

Creighton Manning Engineering, LLP
F:IProjects\20121112-023 Boices LanelcompsltrafficlSYNCHROINB LT,RINETWORKbupm-ALT3.syn

Synchro 7 - Report Page 2

Appendix D

CSX Train Schedule

Railroad Crossing Study
Boices Lane
Town of Ulster, Ulster County, New York

Information provided via email from Robert Rohauer at CSX on September 24, 2012

This is a list of the number of trains we have regularly scheduled each week through this area -

	Total / Day	/ Day	/ Day
Day of week	23	12	11
Monday:	27	12	15
Tuesday:	30	14	16
Wednesday:	31	15	16
Thursday:	29	14	15
Friday:	27	14	13
Saturday:	24	13	11
Sunday:	191	94	97
Week Totals			

The totals are broken down into Southward (94) and Northward (97) respectively. Please keep in mind that these are just the regularly run trains. We also have numerous additional "extra' trains such as ethanol loads (south) and empties (north).

I asked our network folks to run the actual train movement numbers for the month of August -

Date	Moves	Avg Length
8/1/2012	31	5684
8/2/2012	30	5671
8/3/2012	30	5142
8/4/2012	29	6070
8/5/2012	25	6273
8/6/2012	21	5565
8/7/2012	31	4888
8/8/2012	32	5418
8/9/2012	33	5271
8/10/2012	29	5187
8/11/2012	22	6785
8/12/2012	25	5715
8/13/2012	22	5239
8/14/2012	34	4550
8/15/2012	31	5456
8/16/2012	31	5266
8/17/2012	29	5609
8/18/2012	28	5996
8/19/2012	24	5965
8/20/2012	23	5513
8/21/2012	31	5116
8/22/2012	33	5328
8/23/2012	31	5173
8/24/2012	31	5408
8/25/2012	31	6085
8/26/2012	23	5684
8/27/2012	25	4883
8/28/2012	29	5311
8/29/2012	35	5079
8/30/2012	32	5459
8/31/2012	32	4644

We included the average train length in feet to give you a better feel for how long a train would take to clear the crossing. Maximum authorized train speed is 50 mph for trains travelling along the single track main.

Appendix E

Preferred Alternative Planning Level Cost Estimate

Railroad Crossing Study
Boices Lane
Town of Ulster, Ulster County, New York

112-023 - Boices Lane Intersection Improvements
 30-Sep-13

Description of Major Improvements:

Provide additional eastbound thru lane (East Drive Intersection)
Coordinate/replace traffic signals
Maintain separate left-turn, thru, rights-turn lanes on WB approach (East Drive Intersection)
Restripe NB approach for left-turn lane and shared thru/right-turn lane (East Drive intersection)
Restripe WB approach for shared left-turn/thru lane and shared thru/right-turn lane (John Clark Drive intersection)

Approximate ROW required:	16800	SF	0.3862	Acres
ITEM DESCRIPTION	UNITS	PRICE	QUANTITY	TOTAL
EAST DRIVE INTERSECTION				
UNCLASSIFIED EXCAVATION AND DISPOSAL	CY	\$20.00	1,530	\$30,592.59
EMBANKMENT IN PLACE	CY	\$16.00	611	\$9,777.78
PAVEMENT - FULL DEPTH (BOX-OUT WIDENING)	SF	\$8.00	20,650	\$165,200.00
PAVEMENT - MILL AND FILL	SF	\$4.00	27,425	\$109,700.00
CURBING	LF	\$40.00	850	\$34,000.00
PEDESTRIAN IMPROVEMENTS (PED SIGNALS AND CROSSWALKS)	LS	\$50,000.00	1	\$50,000.00
NEW SIGNAL @ EAST DRIVEWAY	LS	\$150,000.00	1	\$150,000.00
SIGNING AND PAVEMENT MARKINGS	LS	\$20,000.00	1	\$20,000.00
MODIFY CLOSED DRAINAGE SYSTEM	LS	\$50,000.00	1	\$50,000.00
UTILITY RELOCATIONS	LS	\$12,500.00	6	\$75,000.00
RAILROAD CROSSING				
PAVEMENT - FULL DEPTH (BETWEEN ROW LINES)	SF	\$8.00	3,725	\$29,800.00
SIDEWALKS	SF	\$6.50	2,750	\$17,875.00
PEDESTRIAN TRAIN CROSSING IMPROVEMENTS	LS	\$50,000.00	1	\$50,000.00
NEW GATES, FLASHERS, SIGNS, AND COORDINATION WITH SIGNALS	LS	\$500,000.00	1	\$500,000.00
SIGNING AND PAVEMENT MARKINGS	LS	\$8,000.00	1	\$8,000.00
JOHN CLARK DRIVE INTERSECTION				
PAVEMENT - MILL AND FILL	SF	\$4.00	27,800	\$111,200.00
PEDESTRIAN IMPROVEMENTS (PED SIGNALS AND CROSSWALKS)	LS	\$50,000.00	1	\$50,000.00
NEW SIGNAL @ JOHN CLARK DRIVE	LS	\$150,000.00	1	\$150,000.00
SIGNING AND PAVEMENT MARKINGS	LS	\$10,000.00	1	\$10,000.00

[^0]: ${ }^{1}$ Manual on Uniform Traffic Control Devices for Streets and Highways, 2009 Edition. Section 8B. 08 Turn Restriction During Preemption, paragraph 1.

